OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 17 — Aug. 23, 2004
  • pp: 3988–3995

Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs

Ziyang Zhang and Min Qiu  »View Author Affiliations


Optics Express, Vol. 12, Issue 17, pp. 3988-3995 (2004)
http://dx.doi.org/10.1364/OPEX.12.003988


View Full Text Article

Acrobat PDF (551 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A series of microcavities in 2D hexagonal lattice photonic crystal slabs are studied in this paper. The microcavities are small sections of a photonic crystal waveguide. Finite difference time domain simulations show that these cavities preserve high Q modes with similar geometrical parameters and field profile. Effective modal volume is reduced gradually in this series of microcavity modes while maintaining high quality factor. Vertical Q value larger than 10(sup6) is obtained for one of these cavity modes with effective modal volume around 5.40 cubic half wavelengths [λ/2nslab)(sup3)]. Another cavity mode provides even smaller modal volume around 2.30 cubic half wavelengths, with vertical Q value exceeding 10(sup5).

© 2004 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(230.5750) Optical devices : Resonators

ToC Category:
Research Papers

History
Original Manuscript: July 12, 2004
Revised Manuscript: August 9, 2004
Published: August 23, 2004

Citation
Ziyang Zhang and Min Qiu, "Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs," Opt. Express 12, 3988-3995 (2004)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-17-3988


Sort:  Journal  |  Reset

References

  1. E. Yablonovitch, ཿInhibited Spontaneous Emission in Solid-State Physics and Electronics,ཿ Phys. Rev. Lett. 58, 2059 (1987) [CrossRef]
  2. S. John, ཿStrong localization of photons in certain disordered dielectric superlattices,ཿ Phys. Rev. Lett. 58, 2486 (1987) [CrossRef]
  3. H. Benisty, ཿModal analysis of optical guides with two-dimensional photonic band-gap boundaries,ཿ J. Appl. Phys. 75, 4753 (1994) [CrossRef]
  4. A. Mekis, S. Fan, and J. D. Joannopoulos, ཿBound states in photonic crystal waveguides and waveguide bendsཿ, Phys. Rev. B 58, 4809 (1998) [CrossRef]
  5. T. F. Krauss, R. M. De La Rue, and S. Brand, ཿTwo-dimensional photonic-bandgap structures operating at near-infrared wavelengthsཿ, Nature 383, 699 (1996) [CrossRef]
  6. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, ཿGuided modes in photonic crystal slabs,ཿ Phys. Rev. B, 60, 5751 (1999) [CrossRef]
  7. S. Fan, Pierre R. Villeneuve, and J. D. Joannopoulos, ཿChannel Drop Tunneling through Localized States,ཿ Phys. Rev. Lett. 80, 960 (1998) [CrossRef]
  8. M. Qiu, ཿUltra-compact optical filter in two-dimensional photonic crystal,ཿ Electron. Lett. 40, 539 (2004) [CrossRef]
  9. M. Qiu and B. Jaskorzynska, ཿA design of a channel drop filter in a two-dimensional triangular photonic crystalཿ, Appl. Phys. Lett. 83, 1074 (2003). [CrossRef]
  10. S. Fan, Proceedings of the SPIE, v 3002, 1997, p 67-73
  11. Spillane, S. M., Kippenberg, T. J. and Vahala, K. J. ཿUltralow-threshold Raman laser using a spherical dielectric microcavity,ཿ S. M. , Nature 415, 621-623 (2002) [CrossRef]
  12. C. Santori, D. Fattal, J. Vu¿¡kovi¿ , G. S. Solomon, and Y. Yamamoto, ཿIndistinguishable photons from a single-photon device,ཿ Nature 419, 594 (2002) [CrossRef]
  13. K. Srinivasan and O. Painter, ཿMomentum space design of high-Q photonic crystal optical cavities,ཿ Opt. Express 10, 670 (2002), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-670">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-670</a>
  14. J. Vu¿¡kovi¿ , M. lon¿ar, H. Mabuchi and A. Scherer, ཿOptimization of the Q factor in photonic crystal microcavities,ཿ IEEE J. of Quantum Electron. 38, 850 (2002)
  15. K. Srinivasan and O. Painter, ཿFourier space design of high-Q cavities in standard and compressed hexagonal lattice photonic crystals,ཿ Opt. Express 11, 579 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-6-579">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-6-579</a>
  16. V. Akahane, T. Asano, B. S. Song, and S. Noda, ཿHigh-Q photonic nanocavity in a two-dimensional photonic crystal,ཿ Nature 425, 944 (2003) [CrossRef]
  17. H. Y. Ryu, M. Notomi, and Y. H. Lee, ཿHigh-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities,ཿ Appl. Phys. Lett. 83, 4294 (2003) [CrossRef]
  18. E.Yablonovitch and T. J. Gmitter, ཿDonor and acceptor modes in photonic band structure,ཿ Phys. Rev. Lett. 67, 3380 (1991) [CrossRef]
  19. K. S. Yee, ཿNumerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,ཿ IEEE Trans. Antennas and Propagation, 14, 302 (1966) [CrossRef]
  20. J. P. Berenger, ཿA perfectly matched layer for the absorption of electromagnetic waves,ཿ J. Comput. Phys. 114, 185 (1994) [CrossRef]
  21. M. Qiu, ཿHigh Q cavities in photonic crystal slabs: determining resonant frequency and quality factor accurately,ཿ submitted for publication (2004)
  22. W. H. Guo, W. J. Li, and Y. Z. Huang, ཿComputation of Resonant Frequencies and Quality Factors of Cavities by FDTD Technique and Padé Approximation,ཿ IEEE Microwave Wireless Components Lett. 11, 223 (2001) [CrossRef]
  23. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. OཿBrien, P. D. Dapkus, and I. Kim, ཿTwo-Dimensional Photonic Band-Gap Defect Mode Laser,ཿ Science 284, 1819 (1999) [CrossRef]
  24. J. Vu¿kovi¿, M. lon¿ar, H. Mabuchi and A. Scherer, ཿDesign of photonic crystal microcavities for cavity QED,ཿ Phys. Rev. E. 65, 016608 (2001) [CrossRef]
  25. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, and A. Imamoglu, ཿQuantum Dot Single-Photon Turnstile Device,ཿ Science 290, 2282 (2000) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited