OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 17 — Aug. 23, 2004
  • pp: 4094–4102

All optical switching and continuum generation in silicon waveguides

Özdal Boyraz, Prakash Koonath, Varun Raghunathan, and Bahram Jalali  »View Author Affiliations

Optics Express, Vol. 12, Issue 17, pp. 4094-4102 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (280 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



First demonstration of cross phase modulation based interferometric switch is presented in silicon on insulator waveguides. By using Mach-Zehnder interferometric configuration we experimentally demonstrate switching of CW signal ~25 nm away from the pump laser. We present the effect of free carrier accumulation on switching. Additionally, we theoretically analyze the transient effects and degradations due to free carrier absorption, free carrier refraction and two photon absorption effects. Results suggest that at low peak power levels the system is governed by Kerr nonlinearities. As the input power levels increase the free carrier effects becomes dominant. Effect of free carrier generation on continuum generation and power transfer also theoretically analyzed and spectral broadening factor for high input power levels is estimated.

© 2004 Optical Society of America

OCIS Codes
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.4320) Optical devices : Nonlinear optical devices
(230.7370) Optical devices : Waveguides
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Research Papers

Original Manuscript: July 22, 2004
Revised Manuscript: August 13, 2004
Published: August 23, 2004

Özdal Boyraz, Prakash Koonath, Varun Raghunathan, and Bahram Jalali, "All optical switching and continuum generation in silicon waveguides," Opt. Express 12, 4094-4102 (2004)

Sort:  Journal  |  Reset  


  1. R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, "Observation of Raman emission in silicon waveguides at 1.54 µm," Opt. Express 10, 1305-1313 (2002) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1305. [CrossRef] [PubMed]
  2. J. J. Wayne, "Optical third-order mixing in GaAs, Ge, Si, and InAs," Phys. Rev. 178, 1295-1303 (1969). [CrossRef]
  3. Peter Y. Yu and Manuel Cardona, Fundamentals of Semiconductors Physics and Materials Properties, (Springer, 2001).
  4. A. Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi, R. M. Osgood; "Nonlinear Absorption in a GaAs Waveguide Just Above Half the Band Gap," IEEE J. Quant. Electron. 30 (5) 1172-1175 (1994). [CrossRef]
  5. A. M. Darwish, E. P. Ippen, H. Q. Lee, J. P. Donnelly, S. H. Groves; "Optimization of four-wave mixing conversion efficiency in the presence of nonlinear loss," Appl. Phys. Lett. 69 (6) 737-739 (1996). [CrossRef]
  6. Y.-H. Kao, T. J. Xia, M. N. Islam; "Limitations on ultrafast optical switching in a semiconductor laser amplifier operating at transparency current," J. Appl. Phys. 86 (9) 4740-4747 (1999). [CrossRef]
  7. R. A. Soref, and J. P. Lorenzo, "All-silicon active and passive guided wave components for λ=1.3 and 1.6µm," IEEE J. Quantum Electron. 22, 873-879 (1986) [CrossRef]
  8. A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, "Silicon electro-optic modulator based on a three terminal device integrated in a low loss single mode SOI waveguide," J. Lightwave Technol. 15, 505-518 (1997). [CrossRef]
  9. C. K. Tang and G. T. Reed, "Highly efficient optical phase modulator in SOI waveguides," Electron. Lett. 31, 451-452, (1995). [CrossRef]
  10. C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, "Silicon on insulator Mach-Zehnder waveguide interferometers operating at 1.3 m," Appl. Phys. Lett. 67, 2448-2449 (1995). [CrossRef]
  11. G. V. Treyz, P. G. May, and J. M. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect," Appl. Phys. Lett. 59, 771-773 (1991). [CrossRef]
  12. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, B. Jalali, "Observation of stimulated Raman amplification in silicon waveguides," Opt. Express 11, 1731-1739 (2003) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1731. [CrossRef] [PubMed]
  13. R. Claps, V. Raghunathan, D. Dimitropoulos, B. Jalali, "Anti-Stokes Raman conversion in Silicon waveguides," Opt. Express 11, 2862-2872 (2003) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2862. [CrossRef] [PubMed]
  14. D. Dimitropoulos, V. Raghunathan, R. Claps, B. Jalali, "Phase-matching and nonlinear optical process in silicon waveguides," Opt. Express 12, 149-160 (2004) http://www.opticsexpress.org/abstract.cfm?URI= OPEX-12-1-149. [CrossRef] [PubMed]
  15. D. Dimitropoulos, V. Raghunathan, R. Claps, B. Jalali, "Phase matching and nonlinear optical process in silicon waveguides," Proceedings of IPR 2004, Paper IThE3, (2004).
  16. J. I. Dadap, R. L. Espinola, R. M. Osgood, Jr., S. J. McNab, Y. A. Vlasov, "Spontaneous Raman scattering in a silicon wire waveguide," Proceedings of IPR 2004, Paper IWA4, (2004)
  17. T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, "Silicon waveguide two-photon absorption detector at 1.5µm wavelength for autocorrelation measurements," Appl. Phys. Lett. 81, 1323-1325 (2002). [CrossRef]
  18. T. K. Liang, H. K. Tsang; "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 84 (15) 2745-2747 (2004). [CrossRef]
  19. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali "Influence of nonlinear absorption on Raman amplification in Silicon waveguides," Opt. Express 12, 2774-2780 (2004) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774. [CrossRef] [PubMed]
  20. A. R. Cowan, G. W. Rieger, and J. F. Young, "Nonlinear transmission of 1.5 µm pulses through single-mode silicon-on-insulator waveguide structures," Opt. Express 12, 1611-1621 (2004) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1611. [CrossRef] [PubMed]
  21. M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom waveguides," Appl. Phys. Lett. 82, 2954-2956 (2003). [CrossRef]
  22. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 mm wavelength," Appl. Phys. Lett. 80, 416-418 (2002) [CrossRef]
  23. O. Boyraz, T. Indukuri, and B. Jalali, "Self-phase-modulation induced spectral broadening in silicon waveguides," Opt. Express 12, 829-834 (2004) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-829. [CrossRef] [PubMed]
  24. Freeouf, J. L., Liu, S. T. Proceedings of IEEE International SOI Conference, Tucson, AZ, 74-75 (1995).
  25. Mendicino, M. A., Comparison of properties of available SOI materials. Properties of Crystalline Silicon, Ed. Hull, Robert. INSPEC, IEE. 992-1001 (1998).
  26. Kuwuyama, T., Ishimura, M., Arai, E., "Interface recombination velocity of Silicon-on-insulator wafers measured by microwave reflectance photoconductivity method with electric field," Appl. Phys. Lett. 83, 928-930 (2003). [CrossRef]
  27. K. W. DeLong, A. Gabel, C. T. Seaton, and G. I. Stegeman, "Nonlinear transmission, degenerate four-wave mixing, photodarkening, and the effects of carrier-density-dependent nonlinearities in semiconductor-doped glasses," J. Opt. Soc. Am. B 6, 1306-1313 (1989). [CrossRef]
  28. R. A. Soref, and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987) [CrossRef]
  29. G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited