OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 17 — Aug. 23, 2004
  • pp: 4103–4112

Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fiber

Christoffer Abrahamsson, Tomas Svensson, Sune Svanberg, Stefan Andersson-Engels, Jonas Johansson, and Staffan Folestad  »View Author Affiliations

Optics Express, Vol. 12, Issue 17, pp. 4103-4112 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (275 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a novel system for time-resolved diffuse remission spectral measurements, based on short light continuum pulses generated in an index-guided crystal fiber, and a spectrometer-equipped streak camera. The system enables spectral recordings of absorption and reduced scattering coefficients of turbid media in the wavelength range 500–1200 nm with a spectral resolution of 5 nm and a temporal resolution of 30 ps. The optical properties are calculated by fitting the solution of the diffusion equation to the time-dispersion curve at each wavelength. Example measurements are presented from an apple, a finger and a pharmaceutical tablet.

© 2004 Optical Society of America

OCIS Codes
(060.5060) Fiber optics and optical communications : Phase modulation
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(290.7050) Scattering : Turbid media
(300.6500) Spectroscopy : Spectroscopy, time-resolved

ToC Category:
Research Papers

Original Manuscript: July 16, 2004
Revised Manuscript: August 16, 2004
Published: August 23, 2004

Christoffer Abrahamsson, Tomas Svensson, Sune Svanberg, Stefan Andersson-Engels, Jonas Johansson, and Staffan Folestad, "Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fiber," Opt. Express 12, 4103-4112 (2004)

Sort:  Journal  |  Reset  


  1. P. Geladi, D. MacDougall, and H. Martens, "Linearization and scatter correction for near-infrared reflectance spectra of meat," Appl. Spectrosc. 39, 491-500 (1985). [CrossRef]
  2. S. Wold, H. Antii, F. Lindgren, and J. Ohman, "Orthogonal signal correction of near-infrared spectra," Chemom. Intell. Lab. Syst. 44, 175-185 (1998). [CrossRef]
  3. V. Centner, J. Verdú-Andrés, B. Walczak, D. Jouan-Rimbaud, F. Despagne, L. Pasti, R. Poppi, D-L. Massart, and O. E. de Noord, "Comparison of multivariate calibration techniques applied to experimental NIR data sets," Appl. Spectrosc. 54, 608-629 (2000). [CrossRef]
  4. T. Burger, J. Kuhn, R. Caps, and J. Fricke, "Quantitative determination of the scattering and absorption coefficients from diffuse reflectance and transmittance measurements," J. Appl. Spectrosc. 51, 309-317 (1997). [CrossRef]
  5. O. Berntsson, T. Burger, S. Folestad, L. G. Danielsson, J. Kuhn, and J. Fricke, "Effective sample size in diffuse reflectance near-IR spectrometry," Anal. Chem. 71, 617-623 (1999). [CrossRef] [PubMed]
  6. M. S. Patterson, B. Chance, and B. C. Wilson, "Time resolved reflectance and transmittance for the noninvasive measurement of optical properties," Appl. Opt. 28, 2331-2336 (1989). [CrossRef] [PubMed]
  7. M. S. Patterson, J. D. Moulton, B. C. Wilson, and B. Chance, "Applications of time-resolved light scattering measurements to photodynamic therapy dosimetry," in Photodynamic Therapy: Mechanisms II, Proc. SPIE 1205, 62-75 (1990).
  8. S. J. Madsen, M. S. Patterson, B. C. Wilson, Y. D. Park, J. D. Moulton, S. L. Jacques, and Y. Hefetz, "Time resolved diffuse reflectance and transmittance studies in tissue simulating phantoms: a comparison between theory and experiment," in Time-Resolved Spectroscopy and Imaging of Tissue B. Chance, ed. Proc. SPIE 1431, 42-51 (1991).
  9. S. Andersson-Engels, R. Berg, and S. Svanberg, "Effects of optical constants on time-gated transillumination of tissue and tissue-like media," J. Photochem. Photobiol. B. 16, 155-167 (1992). [CrossRef] [PubMed]
  10. S. Andersson-Engels, R. Berg, A. Persson, and S. Svanberg, "Multispectral tissue characterization with time-resolved detection of diffusely scattered white light," Opt. Lett. 18, 1697-1699 (1993). [CrossRef] [PubMed]
  11. R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, M. Ruiz-Altisent, C. Valero, C. Ortiz, C. Dover, and D. Johnson, "Time-resolved reflectance spectroscopy applied to the nondestructive monitoring of the internal optical properties in apples," Appl. Spectrosc. 55, 1368-1374 (2001). [CrossRef]
  12. J. R. Lakowicz and K. Berndt, "Frequency-domain measurements of photon migration in tissues," Chem. Phys. Lett. 166, 246 (1990). [CrossRef]
  13. J. Fishkin, E. Gratton, M. J. vandeVen, and W. W. Mantulin, "Diffusion of intensity modulated nearinfrared light in turbid media," in Time-Resolved Spectroscopy and Imaging of Tissue B. Chance, ed. Proc. SPIE 1431, 122-135 (1991).
  14. M. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, and J. R. Lakowicz, "Frequency-domain reflectance for the detemination of the scanttering and absorption properties of tissue," Appl. Opt. 30, 4474-4476 (1991). [CrossRef] [PubMed]
  15. S. J. Madsen, E. R. Anderson, R. C. Haskell, and B. J. Tromberg, "Portable, high-bandwidth frequency-domain photon migration instrument for tissue spectroscopy," Opt. Lett. 19, 1934-1936 (1994). [CrossRef] [PubMed]
  16. E. Gratton and J. Maier, "Frequency-domain measurements of photon migration in highly scattering media," Medical Optical Tomography. 534-544 (1996).
  17. M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, and S. Fantini, "On-line optical imaging of the human brain with 160-ms temporal resolution," Opt. Express. 6, 49-57 (2000), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-3-49">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-3-49</a> [CrossRef]
  18. T. J. Farrell, B. C. Wilson, and M. S. Patterson, "The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements," Phys. Med. Biol. 37, 2281-2286 (1992). [CrossRef] [PubMed]
  19. J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, and S. Andersson-Engels, "Fiber optic probe for non-invasive real-time determination of tissue optical properties at multiple wavelengths," Appl. Opt. 40, 1155-1164 (2001). [CrossRef]
  20. R. L. P. van Veen, W. Verkruysse, and H. J. C. M. Sterenborg, "Diffuse-reflectance spectroscopy from 500 to 1060 nm by correction for inhomogeneously distributed absorbers," Opt. Lett. 27, 246-248 (2002). [CrossRef]
  21. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast," Appl. Phys. Lett. 74, 874-876 (1999). [CrossRef]
  22. A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, S. Andersson-Engels, and R. Cubeddu, "Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances," J. Biomedical Optics. (to be published).
  23. R. R. Alfano and S. L. Shapiro, "Observation of self-phase modulation and small-scale filaments in crystals and glasses," Phys. Rev. Lett. 24, 592-594 (1970). [CrossRef]
  24. R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen, and W. J. Tomlinson, "Femotsecond white-light continuum pulses," Opt. Lett. 8, 1-3 (1983). [CrossRef] [PubMed]
  25. O. Jarlman, R. Berg, S. Andersson-Engels, S. Svanberg, and H. Pettersson, "Time-resolved white light transillumination for optical imaging," Acta Radiol. 38, 185-189 (1997). [PubMed]
  26. J. Johansson, S. Folestad, M. Josefson, A. Sparen, C. Abrahamsson, S. Andersson-Engels, and S. Svanberg, "Time-resolved NIR/Vis spectroscopy for analysis of solids: Pharmaceutical tablets," Appl. Spectrosc. 56, 725-731 (2002). [CrossRef]
  27. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000). [CrossRef]
  28. J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and J. P. de Sandro, "Photonic crystals as optical fibres - physics and applications," Optical Materials. 11, 143-151 (1999). [CrossRef]
  29. C. Abrahamsson, S. Andersson-Engels, S. Folestad, J. Johansson, and S. Svanberg. "New measuring technique", Patent Application PCT WO 2002075286 (2002)
  30. G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, "Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers," Opt. Express. 10, 1083-1098 (2002), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-20-1083">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-20-1083</a> [CrossRef] [PubMed]
  31. J. Swartling, J. S. Dam, and S. Andersson-Engels, "Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties," Appl. Opt. 42, 4612-4620 (2003). [CrossRef] [PubMed]
  32. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, "Boundary conditions for the diffusion equation in radiative transfer," J. Opt. Soc. Am. A. 11, 2727-2741 (1994). [CrossRef]
  33. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Experimental test of theoretical models for time-resolved reflectance," Med. Phys. 23, 1625-1633 (1996). [CrossRef] [PubMed]
  34. C. Abrahamsson, J. Johansson, A. Sparén, and F. Lindgren, "Comparison of different variable selection methods conducted on NIR transmission measurements on intact tablets," Chemom. Intell. Lab. Syst. 69, 3-12 (2003). [CrossRef]
  35. I. Georgakoudi, B. C. Jacobson, J. van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, "Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett's esophagus," Gastroenterology. 120, 1620-1629 (2001).
  36. F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, "Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods," Appl. Opt. 39, 6498-6507 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited