OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 17 — Aug. 23, 2004
  • pp: 4150–4156

Capabilities and limitations of pupil-plane filters for superresolution and image enhancement

Brynmor J. Davis, William C. Karl, Anna K. Swan, M. Selim Ünlü, and Bennett B. Goldberg  »View Author Affiliations

Optics Express, Vol. 12, Issue 17, pp. 4150-4156 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (372 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The use of pupil-plane filters in microscopes has been proposed as a method of producing superresolution. Here it is shown that pupil-plane filters cannot increase the support of the transfer function for a large class of optical systems, implying that resolution cannot be improved solely by adding pupil-plane filters to an instrument. However, pupil filters can improve signal-to-noise performance and modify transfer-function zero crossing positions, as demonstrated through a confocal fluorescence example.

© 2004 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(110.1220) Imaging systems : Apertures
(110.4850) Imaging systems : Optical transfer functions
(180.1790) Microscopy : Confocal microscopy
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:
Research Papers

Original Manuscript: May 17, 2004
Revised Manuscript: August 13, 2004
Published: August 23, 2004

Brynmor Davis, William Karl, Anna Swan, M. Unlu, and Bennett Goldberg, "Capabilities and limitations of pupil-plane filters for superresolution and image enhancement," Opt. Express 12, 4150-4156 (2004)

Sort:  Journal  |  Reset  


  1. C.J.R. Sheppard and Z.S. Hegedus, �??Axial behavior of pupil-plane filters,�?? J. Opt. Soc. Am. A 5, 643-647 (1988). [CrossRef]
  2. C.J.R. Sheppard, �??Leaky annular pupils for improved axial imaging,�?? Optik 99, 32-34 (1995).
  3. S. Grill and E.H.K. Stelzer, �??Method to calculate lateral and axial gain factors of optical setups with a large solid angle,�?? J. Opt. Soc. Am. A 16, 2658-2665 (1999). [CrossRef]
  4. M. Martýnez-Corral, M.T. Caballero, E.H.K. Stelzer and J. Swoger, �??Tailoring the axial shape of the point spread function using the Toraldo concept,�?? Opt. Express 10, 98-103 (2002). [CrossRef] [PubMed]
  5. D. Mugnai, A. Ranfagni and R. Ruggeri, �??Pupils with super-resolution,�?? Phys. Lett. A 311, 77-81 (2003). [CrossRef]
  6. M. Martýnez-Corral, C. Ibanez-Lopez and G. Saavedra, �??Axial gain resolution in optical sectioning fluorescence microscopy by shaded-ring filters,�?? Opt. Express 11, 1740-1745 (2003). [CrossRef] [PubMed]
  7. D.M. de Juana, J.E. Oti, V.F. Canales and M.P. Cagigal, �??Transverse or axial superresolution in a 4Pi-confocal microscope by phase-only filters,�?? J. Opt. Soc. Am. A 20, 2172-2178 (2003). [CrossRef]
  8. W. Denk, J.H. Strickler and W.W. Webb, �??Two-photon laser scanning fluorescence microscopy,�?? Science 248, 73-76 (1990). [CrossRef] [PubMed]
  9. S. Hell and E.H.K. Stelzer, �??Properties of a 4Pi confocal fluorescence microscope,�?? J. Opt. Soc. Am. A 9, 2159-2166 (1992). [CrossRef]
  10. C.W. McCutchen, �??Generalized aperture and the three-dimensional diffraction image,�?? J. Opt. Soc. Am. 54, 240-244 (1964). [CrossRef]
  11. C.J.R. Sheppard, M. Gu, Y. Kawata and S. Kawata, �??Three-dimensional transfer functions for high-aperture systems,�?? J. Opt. Soc. Am. A 11, 593-598 (1994). [CrossRef]
  12. M. Gu and C.J.R. Sheppard, �??Three-dimensional transfer functions in 4Pi confocal microscopes,�?? J. Opt. Soc. Am. A 11, 1619-1627 (1994). [CrossRef]
  13. C.W. McCutchen, �??Generalized aperture and the three-dimensional diffraction image: erratum,�?? J. Opt. Soc. Am. A 19, 1721 (2002). [CrossRef]
  14. M.R. Arnison and C.J.R. Sheppard, �??A 3D vectorial optics transfer function suitable for arbitrary pupil functions,�?? Opt. Commun. 211, 53-63 (2002). [CrossRef]
  15. A. Schonle and S.W. Hell, �??Calculation of vectorial three-dimensional transfer functions in large-angle focusing systems,�?? J. Opt. Soc. Am. A 19, 2121-2126 (2002). [CrossRef]
  16. C.J.R. Sheppard, �??The spatial frequency cut-off in three-dimensional imaging,�?? Optik 72, 131-133 (1986).
  17. C.J.R. Sheppard, �??The spatial frequency cut-off in three-dimensional imaging II,�?? Optik 74, 128-129 (1986).
  18. B. Richards and E. Wolf, �??Electromagnetic diffraction in optical systems II: Structure of the image field in an aplanatic system,�?? Proc. Roy. Soc. A (London) 253, 358-379 (1959). [CrossRef]
  19. M. Nagorni and S.W. Hell, �??Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy. I. Comparative study of concepts,�?? J. Opt. Soc. Am. A 18, 36-48 (2001). [CrossRef]
  20. G. Toraldo di Francia, �??Nuovo pupille superresolventi,�?? Atti Fond. Giorgio 7, 366-372 (1952).
  21. T.A. Klar, E. Engel and S.W. Hell, �??Breaking Abbe�??s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes,�?? Phys. Rev. E 64, 066613 (2001). [CrossRef]
  22. R. Heintzmann, T.M. Jovin and C. Cremer, �??Saturated patterned excitation microscopy �?? a concept for optical resolution improvement,�?? J. Opt. Soc. Am. A 19, 1599-1609 (2002). [CrossRef]
  23. M. Gu and C.J.R. Sheppard, �??Confocal fluorescent microscopy with a finite-sized circular detector,�?? J. Opt. Soc. Am. A 9, 151-153 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited