OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 18 — Sep. 6, 2004
  • pp: 4178–4188

Influence of loss on linearity of microring-assisted Mach-Zehnder modulator

Jianyi Yang, Fan Wang, Xiaoqing Jiang, Hongchang Qu, Minghua Wang, and Yuelin Wang  »View Author Affiliations


Optics Express, Vol. 12, Issue 18, pp. 4178-4188 (2004)
http://dx.doi.org/10.1364/OPEX.12.004178


View Full Text Article

Enhanced HTML    Acrobat PDF (546 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The microring-assisted (MRA) Mach-Zehnder (MZ) modulator offers a potential solution to attaining highly linear optical modulators. In this paper, the influence of waveguide loss on the linearity property of the MRA-MZ modulator is analyzed. The way to choose the biasing points is introduced. Analysis shows that the linearity of the MRA-MZ modulator is high, even at low-loss conditions. By properly setting the biasing phases, the 2nd - and 3rd-order harmonic terms of the modulation curve can be removed. The linearity range can reach 90% when the round-trip loss of the microring is less than 3 dB. The maximum modulation depth is the main factor that limits the linearity range of the modulation curve when the loss is large, but with proper power ratio setting between the two arms of the MZ interferometer, the intrinsic maximum modulation depth can be improved and the linearity range can be kept large.

© 2004 Optical Society of America

OCIS Codes
(060.4080) Fiber optics and optical communications : Modulation
(130.0130) Integrated optics : Integrated optics
(230.4110) Optical devices : Modulators

ToC Category:
Research Papers

History
Original Manuscript: July 29, 2004
Revised Manuscript: August 17, 2004
Published: September 6, 2004

Citation
Jianyi Yang, Fan Wang, Xiaoqing Jiang, Hongchang Qu, Minghua Wang, and Yuelin Wang, "Influence of loss on linearity of microring-assisted Mach-Zehnder modulator," Opt. Express 12, 4178-4188 (2004)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-18-4178


Sort:  Journal  |  Reset  

References

  1. R. Alferness, "Waveguide electrooptic modulators," IEEE T. Microwave Theory and Techniques 82, 1121�??1137 (1982) [CrossRef]
  2. J. Yang, Q. Zhou, Z. Wu, T. Wu, M. Wang, Y. Takahasi, K. Tada, "GaAs/GaAlAs travelling-wave directional coupler modulators: I. Design & II experiment," Acta Optica Sinica, 17, 581-585 & 782-785 (1997).
  3. Y. Shi, C. Zhang, H. Zhang, J. Bechtel, L. Dalton, B. Robinson, and W. Steier, �??Low (Sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,�?? Science 288, 119-122 (2000). [CrossRef]
  4. J. Yang, Q. Zhou, X. Jiang, M. Wang, and R. Chen, �??Polymer-based electro-optical circular-polarization modulator,�?? IEEE Photon. Technol. Lett. 16, 96-98 (2004). [CrossRef]
  5. E. Zolotov, R. Tavlykaev, �??Integrated optical Mach-Zehnder modulator with a Linearized modulation characteristic,�?? Sov. J. Quantum Electron. 18, 401-402 (1988). [CrossRef]
  6. S. Korotky, R. Ridder, �??Dual parallel modulation scheme for low-distortion analog optical transmission,�?? IEEE J. Select. Areas Commun. 8, 1377�??1381 (1990). [CrossRef]
  7. M. Farwell, Z. Lin, E. Wooten, and W. Chang, �??An electrooptic intensity modulator with improved linearity,�?? IEEE Photon. Technol. Lett. 3, 792-795 (1991). [CrossRef]
  8. A. Djupsjobacka, "A linearization concept for integrated-optic modulators," IEEE Photon. Technol. Lett. 4, 869-872 (1992). [CrossRef]
  9. R. Tavlykaev, R. Ramaswamy, �??Highly linear Y-fed directional coupler modulator with low intermodulation distortion,�?? J. Lightwave Technol. 17 282�??291 (1999). [CrossRef]
  10. Q. Zhou, J. Yang, Z. Shi, Y. Jiang, B. Howley, and R. Chen, "Performance limitations of a Y-branch directional-coupler-based polymeric high-speed electro-optical modulator," Opt. Eng. 43, 806-811 (2004). [CrossRef]
  11. B. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, W. Greene, �??Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,�?? IEEE Photon. Technol. Lett. 10, 549 �??551 (1998). [CrossRef]
  12. J. Yang, Q. Zhou, F. Zhao, X. Jiang, B. Howley, M. Wang, R. Chen, �??Characteristics of optical bandpass filters employing series-cascaded double-ring resonators,�?? Opt. Commun. 228 91-98 (2003). [CrossRef]
  13. Y. Hatakeyama, T. Hanai, S. Suzuki, Y. Kokubun, "Loss-less multilevel crossing of busline waveguide in vertically coupled microring resonator filter," IEEE Photon. Technol. Lett. 16, 473- 475 (2004). [CrossRef]
  14. C. Madsen, J. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach, (John Wiley & Sons, Inc., New York, 1999).
  15. X. Xie, J. Khurgin, J. Kang, F. Chow, "Linearized Mach-Zehnder intensity modulator," IEEE Photon. Technol. Lett. 15, 531�??533 (2003). [CrossRef]
  16. G. Betts, L. Walpita, W. Chang, R. Mathis, �??On the linear dynamic range of integrated electrooptical modulators,�?? IEEE J. Quantum Electron. 22, 1009-1011 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited