OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 19 — Sep. 20, 2004
  • pp: 4467–4475

Enhancement of shear-force sensitivity using asymmetric response of tuning forks for near-field scanning optical microscopy

Jang-Hoon Yoo, Jae-Hoon Lee, Sang-Youp Yim, Seung-Han Park, Myong-Do Ro, Joo-Ho Kim, In-Sik Park, and Kyuman Cho  »View Author Affiliations


Optics Express, Vol. 12, Issue 19, pp. 4467-4475 (2004)
http://dx.doi.org/10.1364/OPEX.12.004467


View Full Text Article

Enhanced HTML    Acrobat PDF (1145 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Resonance characteristics of a tuning fork are investigated to enhance the shear-force detection sensitivity for near-field scanning optical microscopy. In particular, we show that the asymmetric frequency response of a tuning fork can be utilized to increase quality factors and suppress the background feedback signal. The pinning down effect on one side of the main peak can readily elevate vertical sensitivity and stability. A simplified model based on a coupled harmonic oscillator is presented to describe the asymmetric resonance behavior of the tuning fork. We also show improved topographic images of a blue-ray disc and optical images of a chromium pattern on the quartz using the asymmetric resonance.

© 2004 Optical Society of America

OCIS Codes
(120.6660) Instrumentation, measurement, and metrology : Surface measurements, roughness
(180.5810) Microscopy : Scanning microscopy

ToC Category:
Research Papers

History
Original Manuscript: July 29, 2004
Revised Manuscript: September 7, 2004
Published: September 20, 2004

Citation
Jang-Hoon Yoo, Jae-Hoon Lee, Sang-Youp Yim, Seung-Han Park, Myong-Do Ro, Joo-Ho Kim, In-Sik Park, and Kyuman Cho, "Enhancement of shear-force sensitivity using asymmetric response of tuning forks for near-field scanning optical microscopy," Opt. Express 12, 4467-4475 (2004)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-19-4467


Sort:  Journal  |  Reset  

References

  1. D. W. Pohl, W. Denk, and M. Lanz, �??Optical stethoscopy: image recording with resolution λ/20,�?? Appl. Phys. Lett. 44, 651 (1984). [CrossRef]
  2. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, �??Breaking the diffraction barrier: optical microscopy on a nanometric scale,�?? Science 251, 1468 (1991). [CrossRef] [PubMed]
  3. R. Toledo-Crow, P. Yang, Y. Chen, and M. Vaez-Iravani, �??Near-field differential scanning optical microscope with atomic force regulation,�?? Appl. Phys. Lett. 60, 2957 (1992). [CrossRef]
  4. E. Betzig, P. L. Finn, and J. S. Weiner, �??Combined shear force and near-field scanning optical microscopy,�?? Appl. Phys. Lett. 60, 2484 (1992). [CrossRef]
  5. K. Karrai and R. D. Grober, �??Piezoelectric tip-sample distance control for near-field optical microscopes,�?? Appl. Phys. Lett. 66, 1842 (1995). [CrossRef]
  6. A. G. T. Ruiter, J. A. Veerman, K. O. van der Werf, and N. F. van Hulst, �??Dynamic behavior of tuning fork shear-force feedback,�?? Appl. Phys. Lett. 71, 28 (1997). [CrossRef]
  7. T. Okajima and S. Hirotsu, �??Study of shear force between glass microscope and mica surface under controlled humidity,�?? Appl. Phys. Lett. 71, 545 (1997). [CrossRef]
  8. W. A. Atia and C. C. Davis, �??A phase-locked shear-force microscope for distance regulation in near-field optical microscopy,�?? Appl. Phys. Lett. 70, 405 (1997). [CrossRef]
  9. M. J. Gregor, P. G. Blome, J. Schöfer, and R. G. Ulbrich, �??Probe-surface interaction in near-field optical microscopy: The nonlinear bending force mechanism,�?? Appl. Phys. Lett. 68, 307 (1996). [CrossRef]
  10. Y. Martin, C. C. Williams, and H. K. Wickramashinghe, �??Atomic force microscope-force mapping and profiling on a sub 100 °A scale,�?? J. Appl. Phys. 61, 4723 (1987). [CrossRef]
  11. R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, �??Fundamental limits to force detection using quatz tuning froks,�?? Rev. Sci. Instrum. 71, 2776 (2000). [CrossRef]
  12. R. S. Decca, H. D. Drew, and K. L. Empson, �??Mecahnical oscillator tip-to-sample separation control for near-field optical microscopy,�?? Rev. Sci. Instrum. 68, 1291 (1997). [CrossRef]
  13. J. Salvi, P. Chevassus, A. Mouflard, S. Davy, M. Spajer, and D. Courjon, �??Piezoelectric shear force detection: a geometry avoiding critical tip/tuning fork gluing,�?? Rev. Sci. Instrum. 69, 1744 (1998). [CrossRef]
  14. A. V. Zvyagin, J. D. White, M. Kourogi, M. Kozuma, and M. Ohtsu, �??Solution to the bistability problem in shear force distance regulation encountered in scanning force and near-field optical microscopes,�?? Appl. Phys. Lett. 71, 2541 (1997). [CrossRef]
  15. D.P. Tsai and Y. Y. Lu, �??Tapping-mode tuning fork force sensing for near-field scanning optical microscopy,�?? Appl. Phys. Lett. 73 2724 (1998) [CrossRef]
  16. L. Meirovitch, Fundamentals of Vibrations (McGraw-Hill, New York, 2001).
  17. M. Ro, K. Lee, D. Yoon, I. Hwang, C. Park, Y. Kim, I. Park, and D. Shin, �??Experimental results of 3-piece 0.4mm molded substrate,�?? Jpn. J. Appl. Phys. 40, 1666 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited