OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 19 — Sep. 20, 2004
  • pp: 4535–4545

Perturbative numerical modeling of microstructure fibers

John M. Fini  »View Author Affiliations

Optics Express, Vol. 12, Issue 19, pp. 4535-4545 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (686 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Modeling of microstructure fibers often involves severe computational bottlenecks, in particular when a design space with many degrees of freedom must be analyzed. Perturbative versions of numerical mode-solvers can substantially reduce the computational burden of problems involving automated optimization or irregularity analysis, where perturbations arise naturally. A basic theory is presented for perturbative multipole and boundary element methods, and the speed and accuracy of the methods are demonstrated. The specific optimization results in an elliptical-hole birefringent fiber design, with substantially higher birefringence than the intuitive unoptimized design.

© 2004 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Research Papers

Original Manuscript: August 25, 2004
Revised Manuscript: September 10, 2004
Published: September 20, 2004

John Fini, "Perturbative numerical modeling of microstructure fibers," Opt. Express 12, 4535-4545 (2004)

Sort:  Journal  |  Reset  


  1. P. Kaiser and H. W. Astle. �??Low-loss single-matrial fibres made from pure fused silica,�?? Bell Syst. Tech. J. 53, 1021�??39 (1974).
  2. S. A. Diddams, D. J. Jones, et al. �??Direct link between microwave and optical frequencies with a 300THz femtosecond laser comb,�?? Phys. Rev. Lett., 84, 5102-5 (2000). [CrossRef] [PubMed]
  3. S. G. Johnson, M. Ibanescu, et al. �??Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,�?? Opt. Express 9, 748-79 (2001). [CrossRef] [PubMed]
  4. John Fini and Ryan Bise. �??Progress in fabrication and modeling of microstructured optical fiber,�?? Jap. J. App. Phys. 43, 5717�??5730 (2004). [CrossRef]
  5. A. Ferrando, E. Silvestre, et al. �??Full vector analysis of a realistic photonic crystal fiber,�?? Opt. Lett. 24, 276-8 (1999). [CrossRef]
  6. T. P. White, R. C. McPhedran, L. C. Botten, G. H. Smith, and C. M. deSterke. �??Calculations of air-guiding modes in photonic crystal fibers using the multipole method,�?? Opt. Express, 9, 721-32 (2001). [CrossRef]
  7. F. Brechet, J. Marcou, et al. �??Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,�?? Opt. Fiber Tech. 6, 181-191 (2000). [CrossRef]
  8. N. Guan, S. Habu, K. Takenaga, K. Himeno, and A. Wada. �??Boundary element method for analysis of holey optical fibers,�?? J. Lightwave. Technol. 21, 1787-92 (2003). [CrossRef]
  9. S. G. Johnson and J. D. Joannopoulos. �??Block-iterative frequency-domain methods for Maxwell�??s equations in a planewave basis,�?? Opt. Express 8, 173-190 (2001). software available at <a href=" http://ab-initio.mit.edu/mpb">http://ab-initio.mit.edu/mpb.</a> [CrossRef] [PubMed]
  10. T. A. Birks, J. C. Knight, and P. S. J. Russell. �??Endlessly single-mode photonic crystal fiber,�?? Opt. Lett. 22, 961-3 (1997). [CrossRef] [PubMed]
  11. T. Hasegawa, T. Saitoh, D. Nishioka, E. Sasaoka, and T. Hosoya. �??Bend-insensitive single-mode holey fibre with SMF compatibility for optical wiring applications,�?? In European Conference on Optical Communications, paper We2.7.3, (2003).
  12. James A. West, Charlene M. Smith, Nicholas F. Borrelli, Douglas C. Allan, and Karl W. Koch. �??Surface modes in air-core photonic band-gap fibers,�?? Opt. Express, 12, 1485-96 (2004). [CrossRef]
  13. A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli. �??Perturbation analysis of dispersion properties in photonic crystal fibers through the finite element method,�?? J. Lightwave Technol. 20, 1433-42 (2002). [CrossRef]
  14. A. Peyrilloux, T. Chartier, L. Berthelot A. Hideur, G. Mélin, S. Lempereur, D. Pagnoux, and P. Roy. �??Thoeretical and experimental study of the birefringence of a photonic crystal fiber,�?? J. Lightwave Technol. 21, 536-9(2003). [CrossRef]
  15. I. K. Hwang, Y. J. Lee, and Y. H. Lee. �??Birefringence induced by irregular structure in photonic crystal fiber,�?? Opt. Express 11, 2799-2806 (2003). [CrossRef] [PubMed]
  16. Steven G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink. �??Perturbation theory for Maxwell�??s equations with shifting material boundaries,�?? Phys. Rev. E 65, 066611 (2002). [CrossRef]
  17. M. J. Steel, T. P. White, C. Martijn de Sterke, R. C. McPhedran, and L. C. Botten. �??Symmetry and degeneracy in microstructured optical fibers,�?? Opt. Lett. 26, 488-91 (2001). [CrossRef]
  18. J. M. Fini. �??Improved symmetry analysis of many-moded microstructure optical fibers,�?? J. Opt. Soc. Am. B, 21, 1431-6 (2004). [CrossRef]
  19. J. M. Fini. �??Perturbative modeling of irregularities in microstructure optical fibers,�?? In Conference on Lasers and Electro-Optics (CLEO), TOPS vol. 96, paper CThX6, (Optical Society of America, Washington, D.C., 2004).
  20. M. Koshiba and K. Saitoh. �??Polarization-dependent confinement losses in actual holey fibers,�?? Photon. Technol. Lett. 15, 691-3 (2003). [CrossRef]
  21. Paul R. McIsaac. �??Symmetry-induced modal characteristics of uniform waveguides-I: Summary of results,�?? Microwave Theory and Techniques 23, 421-9 (1975). [CrossRef]
  22. M. J. Steel and R. M. Osgood. �??Elliptical-hole photonic crystal fibers,�?? Opt. Lett. 26, 229-31 (2001). [CrossRef]
  23. M. J. Steel and R. M. Osgood. �??Polarization and dispersive properties of elliptical-hole photonic crystal fibers,�?? J. Lightwave Technol. 19, 495-503 (2001). [CrossRef]
  24. Charlene M. Smith, Natesan Venkataraman, Michael T. Gallagher, Dirk Müller, James A. West, Nicholas F. Borrelli, Douglas C. Allan, and KarlW. Koch. �??Low loss hollow-core silica/air photonic bandgap fiber,�?? Nature, 424 657-9, (2003). [CrossRef]
  25. William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical recipes in C, the art of scientific computing. (Cambridge University Press, New York, 1992).
  26. C. C. Su. �??A surface integral equations method for homogeneous optical fibres and coupled image lines of arbitrary cross sections,�?? Microwave. Theory and Technol., 33, 1114-9, (1985). [CrossRef]
  27. R. Bise, R. S. Windeler, et al. �??Tunable photonic band gap fiber,�?? In Optical Fiber Communications Conference (OFC), TOPS vol. 70, paper ThK3, (Optical Society of America, Washington, D.C., 2002).
  28. R. Bise and D. Trevor. �??Sol-gel-derived microstructured fibers: fabrication and characterization,�?? To appear in Optical Fiber Communications Conference (OFC), (Optical Society of America, Washington, D.C., 2005).
  29. T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba. �??Hole-assisted lightguide fiber for large anomalous dispersion and low optical loss,�?? Opt. Express 9, 681-6, (2001). [CrossRef] [PubMed]
  30. Alexander Argyros, Ian M. Bassett, Martijn A. van Eijkelenborg, M.C.J. Large, Joseph Zagari, N.A.P. Nicorovici, Ross C. McPhedran, and C. Martijn de Sterke. �??Ring structures in microstructured polymer optical fibres,�?? Opt. Express 9, 813-20, (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited