OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 19 — Sep. 20, 2004
  • pp: 4589–4595

Direct laser writing of thermally stabilized channel waveguides with Bragg gratings

Hiroaki Nishiyama, Isamu Miyamoto, Shin-ichi Matsumoto, Mitsunori Saito, Kenji Kintaka, and Junji Nishii  »View Author Affiliations

Optics Express, Vol. 12, Issue 19, pp. 4589-4595 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (163 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Thermally stabilized photo-induced channel waveguides with Bragg gratings were fabricated in Ge-B-SiO2 thin glass films by exposure with KrF excimer laser and successive annealing at 600°C. The annealing reversed the photo-induced refractive index pattern and also enhanced its thermal stability. The stabilized channel waveguide with a Bragg grating showed diffraction efficiency of 18.0 dB and 18.7 dB for TE- and TM-like modes, respectively. The diffraction efficiencies and wavelengths for both modes never changed after heat treatment at 500°C, whereas the conventional photo-induced grating decayed even at 200°C.

© 2004 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(220.4610) Optical design and fabrication : Optical fabrication
(230.1950) Optical devices : Diffraction gratings
(230.7370) Optical devices : Waveguides

ToC Category:
Research Papers

Original Manuscript: August 18, 2004
Revised Manuscript: September 13, 2004
Published: September 20, 2004

Hiroaki Nishiyama, Isamu Miyamoto, Shin-ichi Matsumoto, Mitsunori Saito, Kenji Kintaka, and Junji Nishii, "Direct laser writing of thermally stabilized channel waveguides with Bragg gratings," Opt. Express 12, 4589-4595 (2004)

Sort:  Journal  |  Reset  


  1. K. O. Hill, P. St. J. Russell, G. Meltz, and A. M. Vengsarkar, �??Fiber Bragg grating technology fundamentals and overview,�?? J. Lightwave Technol. 15, 1263-1276 (1997). [CrossRef]
  2. D. Milanese, M. Ferraris, Y. Menke, M. Olivero, G. Perrone, C. B. E. Gawith, G. Brambilla, P. G. R. Smith, and E. R. Taylor, �??Photosensitive properties of a tin-doped sodium silicate glass for direct ultraviolet writing,�?? Appl. Phys. Lett. 84, 3259-3261 (2004). [CrossRef]
  3. K. P. Chen, P. R. Herman, R. Taylor, and C. Hnatovsky, �??Vacuum-ultraviolet laser-induced refractive-index change and birefringence in standard optical fibers,�?? J. Lightwave. Technol. 21, 1969-1977 (2003). [CrossRef]
  4. A. M. Streltsov, and N. F. Borrelli, �??Study of femtosecond-laser-written waveguides in glasses,�?? J. Opt. Soc. Am. B 19, 2496-2504 (2002). [CrossRef]
  5. D. A. Guilhot, G. D. Emmerson, C. B. E. Gawith, S. P. Watts, D. P. Shepherd, R. B. Williams, and P. G. R. Smith, �??Single-mode direct-ultraviolet-written channel waveguide laser in neodymium-doped silica on silicon,�?? Opt. Lett. 29, 947-949 (2004). [CrossRef] [PubMed]
  6. T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, �??Decay of ultraviolet-induced fiber Bragg gratings,�?? J. Appl. Phys. 76, 73-80 (1994). [CrossRef]
  7. M. Lancry, P. Niay, S. Bailleux, M. Douay, C. Depecker, P. Cordier, and I. Riant, �??Thermal stability of the 248-nm-induced presensitization process in standard H2-loaded germanosilicate fibers,�?? Appl. Opt. 41, 7197-7204 (2002). [CrossRef] [PubMed]
  8. S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, �??Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,�?? J. Lightwave Technol. 15, 1470-1477 (1997). [CrossRef]
  9. M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, �??Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,�?? J. Lightwave. Technol. 15, 1329-1342 (1997). [CrossRef]
  10. J. Rathje, M. Kristensen, and J. E. Pedersen, �??Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,�?? J. Appl. Phys. 88, 1050-1055 (2000). [CrossRef]
  11. H. Patrick, S. L. Gilbert, A. Lidgard, and M. D. Gallagher, �??Annealing of Bragg gratings in hydrogen-loaded optical fiber,�?? J. Appl. Phys. 78, 2940-2945 (1995). [CrossRef]
  12. J. Nishii, K. Kintaka, H. Nishiyama, T. Sano, E. Ohmura, and I. Miyamoto, �??Thermally stabilized photoinduced Bragg gratings,�?? Appl. Phys. Lett. 81, 2364-2366 (2002). [CrossRef]
  13. H. Nishiyama, K. Kintaka, J. Nishii, T. Sano, E. Ohmura, and I. Miyamoto, �??Thermo- and Photo-sensitive GeO2-B2O3-SiO2 thin glass films,�?? Jpn. J. Appl. Phys. 42, 559-563 (2003). [CrossRef]
  14. H. Nishiyama, I. Miyamoto, S. Matsumoto, M. Saito, K. Fukumi, K. Kintaka, and J. Nishii, �??Periodic precipitation of crystalline Ge nanoparticles in Ge-B-SiO2 thin glass films�??, submitted to Appl. Phys. Lett.
  15. H. Nishiyama, E. Ohmura, I. Miyamoto, K. Kintaka, and J. Nishii, �??Formation of the Bragg gratings attributed to the phase separation of Ge-B-SiO2 thin glass films�??, in Proceedings of Microoptics Conference, Paper L-12, Jena, Germany (2004).
  16. B. O. Guan, H. Y. Tam, X. M. Tao, and X. Y. Dong, �??Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,�?? IEEE. Photon. Technol. Lett. 12, 1349-1351 (2000). [CrossRef]
  17. G. Brambilla, �??Enhanced thermal stability of strong gratings written in H-loaded tin-phosphosilicate optical fibers,�?? Appl. Phys. Lett. 81, 4151-4153 (2002). [CrossRef]
  18. Y. Shen, T. Sun, K. T. V. Grattan, and M. Sun, �??Highly photosensitive Sb Er Ge-codoped silica fiber for writing fiber Bragg gratings with strong high-temperature sustainability,�?? Opt. Lett. 28, 2025-2027 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited