OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 2 — Jan. 26, 2004
  • pp: 276–281

Compact source of polarization-entangled photon pairs

P. Trojek, Ch. Schmid, M. Bourennane, H. Weinfurter, and Ch. Kurtsiefer  »View Author Affiliations

Optics Express, Vol. 12, Issue 2, pp. 276-281 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (96 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a compact source of polarization-entangled photon pairs at a wavelength of 805 nm using a violet single-mode laser diode as the pump source of type-II spontaneous parametric down-conversion. The source exhibits entanglement and pair-rate comparable to conventional systems utilizing large frame ion lasers thus significantly increases the practicality of novel quantum information or quantum metrology applications.

© 2004 Optical Society of America

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.0270) Quantum optics : Quantum optics

ToC Category:
Research Papers

Original Manuscript: December 2, 2003
Revised Manuscript: January 9, 2004
Published: January 26, 2004

Pavel Trojek, Ch. Schmid, M. Bourennane, H. Weinfurter, and Ch. Kurtsiefer, "Compact source of polarization-entangled photon pairs," Opt. Express 12, 276-281 (2004)

Sort:  Journal  |  Reset  


  1. P. Shor, �??Polynomial-time algorithms for prime number factorization and discrete logarithms on a quantum computer,�?? SIAM J. Comp. 26, 1484�??1509 (1997). [CrossRef]
  2. Ch. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, �??Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,�?? Phys. Rev. Lett. 70, 1895�??1899 (1993). [CrossRef] [PubMed]
  3. R. Cleve and H. Buhrman, �??Substituting quantum entanglement for communication,�?? Phys. Rev. A 56, 1201�??1204 (1997). [CrossRef]
  4. A. K. Ekert, �??Quantum cryptography based on Bell�??s theorem,�?? Phys. Rev. Lett. 67, 661�??663 (1991). [CrossRef] [PubMed]
  5. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, �??Proposed experiment to test local hidden-variable theories,�?? Phys. Rev. Lett. 23, 880�??884 (1969). [CrossRef]
  6. T. Jennewein, Ch. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, �??Quantum cryptography with entangled photons,�?? Phys. Rev. Lett. 84, 4729�??4732 (2000). [CrossRef] [PubMed]
  7. D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, �??Entangled state quantum cryptography: eavesdropping on the Ekert protokol,�?? Phys. Rev. Lett. 84, 4733�??4736 (2000). [CrossRef] [PubMed]
  8. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, �??Quantum cryptography using entangled photons in energy-time bell states,�?? Phys. Rev. Lett. 84, 4737�??4740 (2000). [CrossRef] [PubMed]
  9. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, �??Experimental quantum teleportation,�?? Nature (London) 390, 575�??579 (1997). [CrossRef]
  10. T. B. Pittman, B. C. Jacobs, and J. D. Franson, �??Demonstration of nondeterministic quantum logic operations using linear optical elements,�?? Phys. Rev. Lett. 88, 257902 (2002). [CrossRef] [PubMed]
  11. A. Migdall, �??Correlated-photon metrology without absolute standards,�?? Physics Today January, 41�??46 (1999). [CrossRef]
  12. M. C. Teich and B. E. A. Saleh, �??Entangled-photon microscopy, spectroscopy, and display,�?? U. S. Patent No. 5,796,477 (1998).
  13. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, �??New high-intensity source of polarization-entangled photon pairs,�?? Phys. Rev. Lett. 75, 4337-4341 (1995). [CrossRef] [PubMed]
  14. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, �??Pulsed energy-time entangled twin-photon source for quantum communication,�?? Phys. Rev. Lett. 82, 2594�??2597 (1999). [CrossRef]
  15. S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, �??Highly efficient photon-pair source using a periodically poled lithium niobate waveguide,�?? Electron. Lett. 37, 26�??28 (2001). [CrossRef]
  16. J. Volz, Ch. Kurtsiefer, and H. Weinfurter, �??Compact all-solid-state source of polarization-entangled photon pairs,�?? Appl. Phys. Lett. 79, 869�??871 (2001). [CrossRef]
  17. K. Sanaka, K. Kawahara, and T. Kuga, �??New high-efficiency source of photon pairs for engineering quantum entanglement,�?? Phys. Rev. Lett. 86, 5620�??5623 (2001). [CrossRef] [PubMed]
  18. Ch. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, �??A high-flux source of polarization-entangled photons from a periodically-poled KTP parametric downconverter,�?? <a href="http://lanl.arxiv.org/abs/quant-ph/0305092.">http://lanl.arxiv.org/abs/quant-ph/0305092</a>
  19. D. Dehlinger and M. W. Mitchell, �??Entangled photon apparatus for the undergraduate laboratory,�?? Am. J. Phys. 70, 898�??902 (2002). [CrossRef]
  20. S. Nakamura and G. Fasol, The blue laser diode (Springer, Heidelberg, 1997).
  21. Ch. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, �??High efficiency entangled photon pair collection in type II parametric fluorescence,�?? Phys. Rev. A 64, 023802 (2001). [CrossRef]
  22. F. A. Bovino, P. Varisco, A. M. Colla, G. Castagnoli, G. Di Giuseppe, and A. V. Sergienko, �??Effective fiber-coupling of entangled photons for quantum communication,�?? Opt. Commun. 227, 343�??348 (2003). [CrossRef]
  23. M. Oberparleiter and H. Weinfurter, �??Cavity-enhanced generation of polarization-entangled photon pairs,�?? Opt. Commun. 183, 133�??137 (2000). [CrossRef]
  24. M. Aspelmeyer, H. R. B¨ohm, T. Gyatso, T. Jennewein, R. Kaltenbaek, M. Lindenthal, G. Molina-Terriza, A. Poppe, K. Resch, M. Taraba, R. Ursin, P. Walther, and A. Zeilinger, �??Long-distance free-space distribution of quantum entanglement,�?? Science 301, 621�??623 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited