OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 20 — Oct. 4, 2004
  • pp: 4698–4708

Characterization of thermally poled germanosilicate thin films

A. Ozcan, M. J. F. Digonnet, G. S. Kino, F. Ay, and A. Aydinli  »View Author Affiliations


Optics Express, Vol. 12, Issue 20, pp. 4698-4708 (2004)
http://dx.doi.org/10.1364/OPEX.12.004698


View Full Text Article

Enhanced HTML    Acrobat PDF (475 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report measurements of the nonlinearity profile of thermally poled low-loss germanosilicate films deposited on fused-silica substrates by PECVD, of interest as potential electro-optic devices. The profiles of films grown and poled under various conditions all exhibit a sharp peak ~0.5 μm beneath the anode surface, followed by a weaker pedestal of approximately constant amplitude down to a depth of 13–16 μm, without the sign reversal typical of poled undoped fused silica. These features suggest that during poling, the films significantly slow down the injection of positive ions into the structure. After local optimization, we demonstrate a record peak nonlinear coefficient of ~1.6 pm/V, approximately twice as strong as the highest reliable value reported in thermally poled fused silica glass, a significant improvement that was qualitatively expected from the presence of Ge.

© 2004 Optical Society of America

OCIS Codes
(190.4400) Nonlinear optics : Nonlinear optics, materials
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Research Papers

History
Original Manuscript: August 13, 2004
Revised Manuscript: September 15, 2004
Published: October 4, 2004

Citation
A. Ozcan, M. Digonnet, G. Kino, F. Ay, and A. Aydinli, "Characterization of thermally poled germanosilicate thin films," Opt. Express 12, 4698-4708 (2004)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-20-4698


Sort:  Journal  |  Reset  

References

  1. Y. Quiquempois, P. Niay, M. Douay, and B. Poumellec, " Advances in poling and permanently induced phenomena in silica-based glasses," Current Opinion in Solid State & Materials Science 7, 89-95 (2003) [CrossRef]
  2. A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Improved technique to determine second-order optical nonlinearity profiles using two different samples," Appl. Phys. Lett. 84, 681-683 (2004). [CrossRef]
  3. A. C. Liu, M. J. F. Digonnet, and G. S. Kino, "Electro-optic phase modulation in silica channel waveguide," Opt. Lett. 19, 466-468 (1994) [CrossRef] [PubMed]
  4. T. Fujiwara, D. Wong, and S. Fleming, "Large electrooptic modulation in a thermally-poled germanosilicate fiber," IEEE Photon. Tech. Lett. 10, 1177-1179 (1995) [CrossRef]
  5. X. C. Long and S. R. J. Brueck, "Large-signal phase retardation with a poled electrooptic fiber," IEEE Photon. Tech. Lett. 9, 767-769 (1997) [CrossRef]
  6. Y. Ren, C. J. Marckmann, J. Arentoft, and M. Kristensen, "Thermally poled channel waveguides with polarization-independent electrooptic effect," IEEE Photon. Tech. Lett. 14 639-641 (2002) [CrossRef]
  7. F. Ay, A. Aydinli, and S. Agan "Low-loss as-grown germanosilicate layers for optical waveguides," Appl. Phys. Lett. 83, 4743-4745 (2003) [CrossRef]
  8. D. Faccio, A. Busacca, D. W. J. Harwood, G. Bonfrate, V. Pruneri, and P. G. Kazansky, "Effect of core-cladding interface on thermal poling of germanosilicate optical waveguides," Opt. Comm. 196, 187-190 (2001) [CrossRef]
  9. J. Khaled, T. Fujiwara, M. Ohama, and A. J. Ikushima, "Generation of second harmonics in Ge-doped SiO2 thin films by ultraviolet irradiation under poling electric field," J. Appl. Phys. 87, 2137-2141 (2000) [CrossRef]
  10. A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Iterative processing of second-order optical nonlinearity depth profiles," Opt. Express 12, 3367-3376 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-15-3367">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-15-3367</a> [CrossRef] [PubMed]
  11. F. Ay, and A. Aydinli, "Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides," Opt. Mat. 26, 33-46 (2004) [CrossRef]
  12. A. S. Huang, Y. Arie, C. C. Neil, and J. M. Hammer, "Study of refractive index of GeO2:SiO2 mixtures using deposited-thin-film optical waveguides," Appl. Opt. 24, 4404-4407 (1985) [CrossRef] [PubMed]
  13. R. A. Myers, N. Mukerjkee, and S. R. J. Brueck, "Large second-order nonlinearity in poled fused silica," Opt. Lett. 16, 1732-1734 (1991). [CrossRef] [PubMed]
  14. A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Cylinder-assisted Maker-fringe technique," Electron. Lett. 39, 1834-1836 (2003). [CrossRef]
  15. P. D. Maker, R. W. Terhune, M. Nisenhoff, and C. M. Savage, "Effects of dispersion and focusing on production of optical harmonics," Phys. Rev. Lett. 8, 21-22 (1962). [CrossRef]
  16. J. Jerphagnon, and S. K. Kurtz, "Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals," J. Appl. Phys. 41, 1667-1681 (1970). [CrossRef]
  17. J. R. Fienup, "Reconstruction of an object from the modulus of its Fourier transform," Opt. Lett. 3, 27-29 (1978). [CrossRef] [PubMed]
  18. T. G. Alley, S. R. J. Brueck, and R. A. Myers, "Space charge dynamics in thermally poled fused silica," J. Non-Cryst. Solids 242, 165-176 (1998) [CrossRef]
  19. A. C. Liu, M. J. F. Digonnet, and G. S. Kino, "Measurement of the dc Kerr and electrostrictive phase modulation in silica," J. Opt. Soc. Am. B 18, 187-194, (2001) [CrossRef]
  20. D. Faccio, V. Pruneri, and P. G. Kazanksy, "Dynamics of the second order nonlinearity in thermally poled silica glass," Appl. Phys. Lett. 79, 2687-2689 (2001) [CrossRef]
  21. N. Boling, A. Glass, and A. Owyoung, "Empirical relationships for predicting nonlinear refractive index changes in optical solids," IEEE J. Quantum Electron. 14, 601-608 (1978). [CrossRef]
  22. A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Simplified inverse Fourier transform technique to measure optical nonlinearity profiles using reference sample," Electron. Lett. 40, 551-552 (2004). [CrossRef]
  23. Y. Quiquempois, G. Martinelli, P. Dutherage, P. Bernage, P. and M. Douay, "Localisation of the induced second-order non-linearity within Infrasil and Suprasil thermally poled glasses," Opt. Comm. 176, 479-487 (2000) [CrossRef]
  24. A. Kameyama, A. Yokotani, K. Kurosawa, "Generation and erasure of second-order optical nonlinearities in thermally poled silica glasses by control of point defects," J. Opt. Soc. Am. B 19, 2376-2383 (2002) [CrossRef]
  25. P. Thamboon and D. M. Krol, "Second-order optical nonlinearities in thermally poled phosphate glasses," J. Appl. Phys. 93, 32-37 (2003) [CrossRef]
  26. R. T. Crosswell, A. Reisman, D. L. Simpson, D. Temple, and C. K. Williams, "Planarization processes and applications: III. As-deposited and annealed film properties," J. Electrochem. Soc. 147, 1513-1524 (2000) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited