OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 20 — Oct. 4, 2004
  • pp: 4742–4750

Dynamical thermal behavior and thermal self-stability of microcavities

Tal Carmon, Lan Yang, and Kerry J. Vahala  »View Author Affiliations

Optics Express, Vol. 12, Issue 20, pp. 4742-4750 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (462 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



As stability and continuous operation are important for almost any use of a microcavity, we demonstrate here experimentally and theoretically a self-stable equilibrium solution for a pump-microcavity system. In this stable equilibrium, intensity- and wavelength-perturbations cause a small thermal resonant-drift that is enough to compensate for the perturbation (noises); consequently the cavity stays warm and loaded as perturbations are self compensated. We also compare here, our theoretical prediction for the thermal line broadening (and for the wavelength hysteretic response) to experimental results.

© 2004 Optical Society of America

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(140.4780) Lasers and laser optics : Optical resonators
(140.6810) Lasers and laser optics : Thermal effects
(190.1450) Nonlinear optics : Bistability

ToC Category:
Research Papers

Original Manuscript: August 17, 2004
Revised Manuscript: September 16, 2004
Published: October 4, 2004

Tal Carmon, Lan Yang, and Kerry Vahala, "Dynamical thermal behavior and thermal self-stability of microcavities," Opt. Express 12, 4742-4750 (2004)

Sort:  Journal  |  Reset  


  1. V. B. Braginsky, M. L. Gordetsky and V. S. Ilchenko, �??Quality-factor and nonlinear properties of optical whispering-gallery modes,�?? Phys. Lett. A 137, 393 (1989) [CrossRef]
  2. V.S. Ilchenko, M.L. Gorodetsky, X.S. Yao, and L. Maleki, �??Microtorus: a high-finesse microcavity with whispering-gallery modes,�?? Opt Lett 26, 256, (2001). [CrossRef]
  3. D. K. Armani, T. J. Kippenberg, S. M. Spillane & K. J. Vahala, �??"Ultra-high-Q toroid microcavity on a chip",�?? Nature 421, 925 (2003). [CrossRef] [PubMed]
  4. M.L. Gorodetsky, and V.S. Ilchenko, �??Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,�?? J. Opt. Soc. Am. B. 16, 147 (1999). [CrossRef]
  5. B.E. Little, J. P. Laine, H.A. Haus. �??Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators,�?? J. Lightwave Technol. 17, 704 (1999). [CrossRef]
  6. V. B. Braginsky, Y.I. Vorontsov, and K.S. Thorne, �??Quantum non-demolition measurements,�?? Science, 209, 47 (1980).
  7. V. B. Braginskii, and V. S. Il�??chenko, Dokl. Akad. Nauk SSSR, 293, 1358 (1987).
  8. D. F. Walls and G. Milburn, Quantum Optics, (Springer, New York, 1994).
  9. M. Scully and M. Zubairy, Quantum Optics, (Cambridge,1996).
  10. Bouwmeester, A. Ekert, and A. Zeilinger, �??The Physics of Quantum Information,�?? (Heidelberg, 2000).
  11. S. M. Spillance, T. J. Kippenberg and K. J. Vahala, �??Ultralow-threshold Raman laser using a spherical dielectric microcavity,�?? Nature, 415, 621 (2002). [CrossRef]
  12. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, �??Whispering-gallery mode microdisk lasers,�?? Appl. Phys. Lett. 60, 289�??291 (1992). [CrossRef]
  13. F. Treussart, J. Hare, V. Lefèvre-Seguin, J. -M. Raimond, and S. Haroche. �??Very low threshold whisperinggallery-mode microsphere laser,�?? Phys. Rev. A 54, R1777�??R1780 (1996). [CrossRef] [PubMed]
  14. Lan Yang, D. K. Armani, and K. J. Vahalab, �??Fiber-coupled Erbium Microlasers on a chip,�?? Appl. Phys. Lett, 83, 825 (2003). [CrossRef]
  15. T. J. Kippenberg, S. M. Spillane and K. J. Vahala, �??Kerr-nonlinearity induced optical parametric oscillation in a ultra-high-Q toroid microcavity ,�?? Phys. Rev. Lett. 93, 083904 (2004). [CrossRef] [PubMed]
  16. V. Lefevre-Seguin, and S. Haroche, �??Towards cavity-QED experiments with silica microspheres,�?? Mater. Sci. Eng. B 48, 53�??58 (1997). [CrossRef]
  17. D.W. Vernooy, A. Furusawa, N. P. Georgiades, , V. S. Ilchenko, and H. J. Kimble, �??Cavity QED with high-Q whispering gallery modes,�?? Phys. Rev. A 57, R2293�??R2296 (1998). [CrossRef]
  18. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold. �??Protein detection by optical shift of a resonant microcavity,�?? Appl. Phys. Lett. 80, 4057�??4059 (2002). [CrossRef]
  19. A. Serpenguzel, S. Arnold, and G. Griffel, �??Excitation of resonances of microspheres on an optical fiber,�?? Opt. Lett. 20, 654�??656 (1995). [CrossRef] [PubMed]
  20. R. K. Chang, and A. J. Campillo, Optical Processes in Microcavities, (World Scientific, Singapore, 1996).
  21. V. S. Ilchenko, and M. L. Gorodetskii, �??Thermal nonlinear effects in optical whispering gallery microresonators,�?? Laser Phys. 2, 1004 (1992).
  22. F. Treussart, V.S. Ilchenko, J.-F. Roch, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, - S. Haroche. �??Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,�?? Eur. Phys. J. D. 1, 235�??238 (1998).
  23. To be precise, while heat convection is proportional to the surface area (l2), heat conduction is proportional to the area divided by the pass length (l2/ l= l). Since both convection and conduction contribute here, the precise scaling is �?T�?? l÷l2 . Being very precise, one should also consider the fact that light wavelength is usually not scaled down and hence the mode volume scaling is actually slightly smaller than l3.
  24. David N. Nikogosyan, Properties of Optical and Laser Related Materials A Handbook, (John Wiley & Son,1997).
  25. M. L. Gorodetsky, and I. S. Grudinin, �??Fundamental thermal fluctuations in microspheres,�?? J. Opt. Soc. Am. B 21, 697, (2004 ). [CrossRef]
  26. T. Carmon, T. J. Kippenberg, L. Yang, H. Rokhsari, S. Spillane, K., J, Vahala, �??Power locked and wavelength locked ultra-high-Q optical microcavities,�?? Submitted to Appl. Phys. Lett. (Aug, 2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (2352 KB)     
» Media 2: MOV (6463 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited