OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 20 — Oct. 4, 2004
  • pp: 4781–4789

Investigation of physical mechanisms in coupling photonic crystal waveguiding structures

Majid Badieirostami, Babak Momeni, Mohammad Soltani, Ali Adibi, Yong Xu, and Reginald K. Lee  »View Author Affiliations

Optics Express, Vol. 12, Issue 20, pp. 4781-4789 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (170 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We explain the fundamental physical mechanisms involved in coupling triangular lattice photonic crystal waveguides to conventional dielectric slab waveguides. We show that the two waveguides can be efficiently coupled outside the mode gap frequencies. We especially focus on the coupling of the two structures within the mode gap frequencies and show for the first time that the diffraction from the main photonic crystal structure plays an important role on the reflection of power back into the slab waveguide. The practical importance of this effect and possible strategies to modify it are also discussed.

© 2004 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(230.7370) Optical devices : Waveguides
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Research Papers

Original Manuscript: August 24, 2004
Revised Manuscript: September 20, 2004
Published: October 4, 2004

Majid Badieirostami, Babak Momeni, Mohammad Soltani, Ali Adibi, Yong Xu, and Reginald Lee, "Investigation of physical mechanisms in coupling photonic crystal waveguiding structures," Opt. Express 12, 4781-4789 (2004)

Sort:  Journal  |  Reset  


  1. E. Yablonovitch, �??Inhibited spontaneous emission in solid state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. A. Chutinan, S. John, and O. Toader, �??Diffractionless flow of light in all-optical microchips,�?? Phys. Rev. Lett. 90, 123901(1-4) (2003). [CrossRef] [PubMed]
  4. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, �??High transmission through sharp bends in photonic crystal waveguides,�?? Phys. Rev. Lett. 77, 3787�??3790 (1996). [CrossRef] [PubMed]
  5. S. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, �??Experimental demonstration of guiding and bending electromagnetic waves in a photonic crystal,�?? Science 282, 274�??276 (1998). [CrossRef] [PubMed]
  6. A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, �??Design of photonic crystal optical waveguides with single mode propagation in the photonic bandgap,�?? Electron. Lett. 36, 1376-1378 (2000). [CrossRef]
  7. N. Stefanou and A. Modinos, �??Impurity bands in photonic insulators,�?? Phys. Rev. B 57, 12127�??12133 (1998). [CrossRef]
  8. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, �??Coupled-resonator optical waveguide: a proposal and analysis,�?? Opt. Lett. 24, 711-713 (1999). [CrossRef]
  9. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light. (Princeton Univ. Press, Princeton, 1995).
  10. A. Jafarpour, A. Adibi, Y. Xu, and R. K. Lee, �??Mode dispersion in biperiodic photonic crystal waveguides,�?? Phys. Rev. B 68, 233102-233105 (2003). [CrossRef]
  11. A. Jafarpour, E. Chow, C. M. Reinke, J. Huang, A. Adibi, A. Grot, L. W. Mirkarimi, G. Girolami, R. K. Lee, and Y. Xu, �??Large-bandwidth ultra-low-loss guiding in bi-periodic photonic crystal waveguides,�?? App. Phys. B 79, 409-414 (2004). [CrossRef]
  12. A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, �??Properties of the Slab Modes in Photonic Crystal Optical Waveguides,�?? J. of Lightwave Tech.18, 1554-1564 (2000). [CrossRef]
  13. A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, �??Guiding mechanisms in dielectric-core photonic-crystal waveguides,�?? Phys. Rev. B 63, 033308(1-4) (2001). [CrossRef]
  14. E. Miyai, M. Okano, M. Mochizuki, and S. Noda, �??Analysis of coupling between two-dimensional photonic crystal waveguide and external waveguide,�?? Appl. Phys. Lett. 81, 3729-3731 (2002). [CrossRef]
  15. S. J. Mc. Nab, N. Moll, and Y. A. Vlasov, �??Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,�?? Opt. Express.11, 2927-2939 (2003). [CrossRef]
  16. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).
  17. K. S. Yee, �??Numerical solution of initial boundary value problems involving Maxwell�??s equations in isotropic media,�?? IEEE Trans. Antennas Propagat. AP-14, 302�??307 (1966).
  18. J. P. Berenger, �??A perfectly matched layer for the absorption of electromagnetic waves,�?? J. Comput. Phys. 114, 185�??200 (1994). [CrossRef]
  19. C. T. Chan, Q. L. Yu, and K. M. Ho, �??Order-N spectral method for electromagnetic-waves,�?? Phys. Rev. B 51, 16 635�??16642 (1995). [CrossRef]
  20. A. Adibi, Y. Xu, R. K. Lee, M. Loncar, A. Yariv, and A. Scherer, �??Role of distributed Bragg reflection in photonic-crystal optical waveguides,�?? Phys. Rev. B 64, 041102(1-4) (2001). [CrossRef]
  21. M. Qiu, K. Azizi, A. Karlsson, M. Swillo, and B. Jaskorzynska, �??Numerical studies of mode gaps and coupling efficiency for line-defect waveguides in two-dimensional photonic crystals,�?? Phys. Rev. B 64, 155113(1-5) 2001. [CrossRef]
  22. T. K. Gaylord, and M. G. Moharam, �??Analysis and Applications of Optical Diffraction by Gratings,�?? Proceedings of the IEEE 73, 894-937 (1985). [CrossRef]
  23. T. Tamir, Guided-wave optoelectronics (Springer-Verlag, New York 1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited