OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 20 — Oct. 4, 2004
  • pp: 4829–4834

Simulation of resonant cavity enhanced (RCE) photodetectors using the finite difference time domain (FDTD) method

Jang Pyo Kim and Andrew M. Sarangan  »View Author Affiliations

Optics Express, Vol. 12, Issue 20, pp. 4829-4834 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (100 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The resonant cavity enhanced (RCE) photodetectors is analyzed using the finite difference time domain (FDTD) method. Unlike the analytical models, FDTD includes all of the essential considerations such as the cavity build-up time, standing wave effect and the refractive index profiles across every layer. The fully numerical implementation allows it to be used as a verification of the analytical models. The simulation is demonstrated in terms of time and space enabling one to visualize how the field inside the cavity builds up. The results are compared with the analytical models to point out the subtle differences and assumptions made in the analytical models.

© 2004 Optical Society of America

OCIS Codes
(040.0040) Detectors : Detectors
(040.5160) Detectors : Photodetectors
(230.0230) Optical devices : Optical devices
(230.5160) Optical devices : Photodetectors

ToC Category:
Research Papers

Original Manuscript: August 4, 2004
Revised Manuscript: September 22, 2004
Published: October 4, 2004

Jang Pyo Kim and Andrew Sarangan, "Simulation of resonant cavity enhanced (RCE) photodetectors using the finite difference time domain (FDTD) method," Opt. Express 12, 4829-4834 (2004)

Sort:  Journal  |  Reset  


  1. K. Kishino, M. S. �?nlü, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, �??Resonant cavity-enhanced (RCE) photodetectors,�?? IEEE J. Quantum Electronics, 27, 2025-2034 (1991). [CrossRef]
  2. F. Y. Huang, A. Salvador, X. Gui, N. Teraguchi, and H. Morkoc, �??Resonant-cavity GaAs/InGaAs/AlAs photodiodes with a periodic absorber structure,�?? Appl. Phys. Lett. 63, 141-143 (1993). [CrossRef]
  3. A. Srinivasan, S. Murtaza, J. C. Campbell, and B. G. Streetman, �??High quantum efficiency dual wavelength resonant-cavity photodetector,�?? Appl. Phys. Lett. 66, 535-537 (1995). [CrossRef]
  4. B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, �??Resonant cavity enhanced detectors embedded in photonic crystals,�?? Appl. Phys. Lett. 72, 2376-2378 (1998). [CrossRef]
  5. Y. H. Zhang, H. T. Luo, and W. Z. Shen, �??Study on the quantum efficiency of resonant cavity enhanced GaAs far-infrared detectors,�?? J. Appl. Phys. 91, 5538-5544 (2002). [CrossRef]
  6. C. Li, Q. Yang, H. Wang, J. Yu, Q. Wang, Y. Li, J. Zhou, H. Huang, X. Ren, �??Back-incident SiGe-Si multiple quantum-well resonant-cavity-enhanced photodetectors for 1.3-µm operation,�?? IEEE Photonics Tech. J. 12, 1373-1375 (2000). [CrossRef]
  7. S. C. Hagness, R. M. Joseph, �??Subpicosecond electrodynamics of distributed Bragg reflector microlasers: Results from finite difference time domain simulations,�?? Radio Science, 31, 931-941 (1996). [CrossRef]
  8. D. K. Cheng, Field and Wave Electromagnetics (Addison-Wesley, Menlo Park, 1992).
  9. M. S. �?nlü, G. Ulu, and M. Gökkavas, �??Resonant cavity enhanced photodetectors,�?? in Photodetectors and Fiber Optics, H. S. Nalwa, ed. (Academic Press, San Diego, Calif., 2001), pp. 97-201.
  10. M. Gökkavas B. M. Onat, E. �?zbay, E. P. Ata, J. Xu, E. Towe, M. S. �?nlü, �??Design and optimization of high-speed resonant cavity enhanced Schottky photodiodes,�?? IEEE J. Quantum Electronics, 35, 208-215 (1999). [CrossRef]
  11. M. S. �?nlü, S. Strite, �??Resont cavity enhanced photonic devices,�?? J. Appl. Phys. 78, 607-639 (1995). [CrossRef]
  12. M. Born, E. Wolf, Principles of Optics (Pergamon Press, Oxford, U. K., 1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

Supplementary Material

» Media 1: MPG (2484 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited