OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 20 — Oct. 4, 2004
  • pp: 4835–4840

Near-field optical storage system using a solid immersion lens with a left-handed material slab

Liu Liu and Sailing He  »View Author Affiliations

Optics Express, Vol. 12, Issue 20, pp. 4835-4840 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (227 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new near-field optical storage system utilizing a left-handed material (LHM) is introduced by attaching an LHM slab to the lower surface of a conventional solid immersion lens (SIL). The performance of the present storage system is compared with a conventional SIL system through numerical simulation. The LHM slab in the present storage system can image very well the focused spot at the lower surface of the SIL to the surface of a disc. It allows a large air-gap for the mechanical convenience while keeping a large signal contrast and a high storage density. The tolerance of the air-gap is also improved.

© 2004 Optical Society of America

OCIS Codes
(210.0210) Optical data storage : Optical data storage
(260.0260) Physical optics : Physical optics
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Research Papers

Original Manuscript: September 7, 2004
Revised Manuscript: September 22, 2004
Published: October 4, 2004

Liu Liu and Sailing He, "Near-field optical storage system using a solid immersion lens with a left-handed material slab," Opt. Express 12, 4835-4840 (2004)

Sort:  Journal  |  Reset  


  1. S. M. Mansfield, W. R. Studenmund, G. S. Kino and K. Osato, �??High numerical-aperture lens system for optical data storage,�?? Opt. Lett. 18, 305-307 (1993). [CrossRef] [PubMed]
  2. T. D. Milster, K. Shimura, J. S. Jo and K. Hirota, �??Pupil-plane filtering for improved signal detection in an optical data-storage system incorporating a solid immersion lens,�?? Opt. Lett. 24, 605-607 (1999). [CrossRef]
  3. K. Hirota, T. D. Milster, K. Shimura, Y. Zhang and J. S. Jo, �??Near-field phase change recording using a GaP hemispherical lens,�?? Jpn. J. Appl. Phys. 39, 968-972 (2000). [CrossRef]
  4. C. Liu and S. H. Park, �??Numerical analysis of an annular-aperture solid immersion lens,�?? Opt. Lett. 29, 1742-1744 (2004). [CrossRef] [PubMed]
  5. V. G. Veselago, �??The electrodynamics of substances with simultaneously negative values of ε and µ,�?? Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  6. J. B. Pendry, �??Negative Refraction Makes a Perfect Lens,�?? Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  7. N. Garcia and M. N. Vesperinas, �??Left-Handed Materials Do Not Make a Perfect Lens,�?? Phys. Rev. Lett. 88, 207403 (2002). [CrossRef] [PubMed]
  8. L. Shen and S. He, �??Studies of the imaging characteristics for a slab of a lossy left-handed material,�?? Phys. Lett. A 309, 298-305 (2003). [CrossRef]
  9. L. Chen, S. He and L. Shen, �??Finite-Size Effects of a Left-Handed Material Slab on the Image Quality,�?? Phys. Rev. Lett. 92, 107404 (2004). [CrossRef] [PubMed]
  10. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna and J. B. Pendry, �??Limitations on subdiffraction imaging with a negative refractive index slab,�?? Appl. Phys. Lett. 82, 1506-1508 (2001). [CrossRef]
  11. S. T. Chui and L. Hu, �??Theoretical investigation on the possibility of preparing left-handed materials in metallic magnetic granular composites,�?? Phys. Rev. B, 65, 144407 (2002). [CrossRef]
  12. J. Q. Shen, Z. C. Ruan and S. He, �??How to realize a negative refraction index material at an atomic level in the optical frequency range?�?? Journal of Zhejiang University SCIENCE 5, No. 11, 1-4 (2004). [CrossRef] [PubMed]
  13. S. Imanishi, T. Ishimoto, Y. Aki, T. Kando, K. Kishima, K. Yamamoto and M. Yamamoto, �??Near-field optical head for disc mastering process,�?? Jpn. J. Appl. Phys. 39, 800-805 (2000). [CrossRef]
  14. L. Liu, Z. Shi and S. He, �??Analysis of the polarization-dependent diffraction from a metallic grating by use of a three-dimensional combined vectorial method,�?? J. Opt. Soc. Am. A 21, 1545-1552 (2004). [CrossRef]
  15. M. Mansuripur, �??Certain computational aspects of vector diffraction problems,�?? J. Opt. Soc. Am. A 6, 786-805 (1989). [CrossRef]
  16. A. Taflove, Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1998).
  17. R. W. Ziolkowski, �??Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs,�?? Opt. Express 11, 662-681 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-662">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-662</a> [CrossRef] [PubMed]
  18. T. D. Milster, �??Near-field optical data storage: avenues for improved performance,�?? Opt. Eng. 40, 2255-2260 (2001). [CrossRef]
  19. C. Y. Luo, S. G. Johnson, and J. D. Joannopoulos, �??Subwavelength imaging in photonic crystals,�?? Phys. Rev. B 68, 045115, (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited