OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 20 — Oct. 4, 2004
  • pp: 4855–4863

Local density of states analysis of surface wave modes on truncated photonic crystal surfaces with nonlinear material

J. Merle Elson and Klaus Halterman  »View Author Affiliations

Optics Express, Vol. 12, Issue 20, pp. 4855-4863 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (1270 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The local density of states and response to an incident plane wave of a finite sized photonic crystal (PC) with nonlinear material (NLM) is analyzed. Of particular interest is the excitation of surface wave modes at the truncated surface of the PC, which is collocated with the NLM material. We compute the 2D Green function of the PC with linear material and then include the Kerr NLM in a self-consistent manner. The 2D PC consists of a square array of circular rods where one row of the rods is semi-circular in order to move the surface wave defect mode frequency into the band gap. Since the surface modes are resonant at the interface, the NLM should experience at least an order of magnitude increase in field intensity. This is a possible means of increasing the efficiency of the PC as a frequency conversion device.

© 2004 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(240.6690) Optics at surfaces : Surface waves

ToC Category:
Research Papers

Original Manuscript: July 26, 2004
Revised Manuscript: September 10, 2004
Published: October 4, 2004

J. Elson and Klaus Halterman, "Local density of states analysis of surface wave modes on truncated photonic crystal surfaces with nonlinear material," Opt. Express 12, 4855-4863 (2004)

Sort:  Journal  |  Reset  


  1. E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059 (1987). [CrossRef] [PubMed]
  2. W. M. Robertson, G. Arjavalingam, R.D. Meade, K.D. Brommer, A.M. Rappe, and J.D. Joannopoulos, �??Observation of surface photons on periodic dielectric arrays,�?? Opt. Lett. 18, 528 (1993). [CrossRef] [PubMed]
  3. R. Hillebrand, St. Senz, W. Hergert, and U. Gösele, �??Macroporous-silicon-based three-dimensional photonic crystal with a large complete band gap,�?? J. Appl. Phys. 94, 2758 (2003). [CrossRef]
  4. B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K.M. Ho, �??Photonic crystalbased resonant antenna with a very high directivity�??, J. Appl. Phys. 87, 603 (2000). [CrossRef]
  5. I. V. Konoplev, A. D. R. Phelps, A.W. Cross, and K. Ronald, �??Experimental studies of the influence of distributed power losses on the transparency of two-dimensional surface photonic band-gap structures,�?? Phys. Rev. E 68, 066613 (2003). [CrossRef]
  6. Y. Wang, B. Cheng, and D. Zhang, �??Distribution of density of photonic states in amorphous photonic materials,�?? Appl. Phys. Lett. 83, 2100 (2003) ; Y.W. Wang, X. Hu, X. Xu, B. Cheng, and D. Zhang, �??Localized modes in defect-free dodecagonal quasiperiodic photonic crystals,�?? Phys. Rev. B 68, 165106 (2003). [CrossRef]
  7. D. P. Fussell, R. C. McPhedran, C. M. de Sterke, and A. A. Asatryan,�??Three-dimensional local density of states in a finite-sized two-dimensional photonic crystal composed of cylinders,�?? Phys. Rev. E 67, 045601 (2003) [CrossRef]
  8. A. A. Asatryan, K. Busch, R. C. McPhedran, L. C. Botten, C. M. de Sterke, and N. A. Nicorovici, �??Twodimensional Green�??s function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length,�?? Phys. Rev. E 63, 046612 (2001) [CrossRef]
  9. F. Villa, L. Regalado, F. Ramos-Mendieta, J. Gaspar-Armenta, and T. Lopez-Rios, �??Photonic crystal sensor based on surface waves for thin-film characterization,�?? Opt. Lett. 27 646 (2002) [CrossRef]
  10. J. Gaspar-Armenta and F. Villa, �??Photonic surface-wave excitation: photonic crystal-metal interface,�?? J. Opt. Soc. Am. B 20 2349 (2003) [CrossRef]
  11. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton NJ, 1995), See page 75 for a diagram of the surface mode dispersion.
  12. O. J. Martin, A. Dereux, C. Girard, �??Generalized field propagator for arbitrary finites-size photonic band gap structures,�?? J. Opt. Soc. Am. A 11 1073 (1994 [CrossRef]
  13. O. J. Martin, C. Girard, D. R. Smith, S. Schultz, �??Iterative scheme for computing exactly the total field propagating in dielectric structures of arbitrary shape,�?? Phys. Rev. Lett. 82 315 (1999) [CrossRef]
  14. O. J. Martin and N. B. Piller, �??Electromagnetic scattering in polarizable backgrounds,�?? Phys. Rev. E 58, 3903 (1998) [CrossRef]
  15. A. D. Yaghjian, �??Electric dyadic Green�??s functions in the source region,�?? Proc. IEEE 68, 248 (1980). [CrossRef]
  16. P. Tran, �??Photonic-band-structure calculation of material possessing Kerr nonlinearity,�?? Phys. Rev. B 52, 10673 (1995) ; [CrossRef]
  17. P. Tran, �??Photonic band structure calculation of system possessing Kerr nonlinearity,�??�?? in �??Photonic Band Gap Materials�?? NATO ASI Series E: Applied Sciences 315, 555, Ed. C. M. Soukoulis (Kluwer Academic Publishers, Boston, 1996).
  18. V. Lousse and P. Vigneron, �??Self-consistent photonic band structure of dielectric superlattices containing nonlinear optical materials,�?? Phys. Rev. E 63 027602 (2001) [CrossRef]
  19. M. Solja¡ci¡c, D. Luo, J.D. Joannopoulos, and S. Fan �??Non-linear photonic crystal microdevices for optical integration,�?? Opt. Lett. 28 637 (2003) [CrossRef]
  20. M. Bahl, N. Panoiu, and R. Osgood, �??Nonlinear optical effects in a two-dimensional photonic crystal containing one-dimensional Kerr defects,�?? Phys. Rev. E 67 056604 (2003) [CrossRef]
  21. S. Mingaleev, Y. Kivshar, �??Nonlinear transmission and light localization in photonic-crystal waveguides,�?? J. Opt. Soc. Am. B 19 2241 (2002) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited