OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 21 — Oct. 18, 2004
  • pp: 5013–5021

Bipolar absolute differential confocal approach to higher spatial resolution

Weiqian Zhao, Jiubin Tan, and Lirong Qiu  »View Author Affiliations


Optics Express, Vol. 12, Issue 21, pp. 5013-5021 (2004)
http://dx.doi.org/10.1364/OPEX.12.005013


View Full Text Article

Enhanced HTML    Acrobat PDF (2388 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By use of a superresolution pupil filtering technique to achieve a lateral optical superresolution and a differential confocal microscopy technique to achieve an axial resolution at the nanometer level, we propose a high spatial resolution bipolar absolute differential confocal approach for the ultraprecision measurement of three-dimensional microstructures. The feasibility of the proposed approach has been proved by use of a shaped annular beam differential confocal microscopy system. The experimental results indicate that the lateral and axial resolutions of the shaped annular beam differential confocal system are better than 0.2 μm and 2 nm, respectively, when λ=632.8 nm, ε=0.5, uM =6.95, and with a 0.85 numerical aperture.

© 2004 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(120.6660) Instrumentation, measurement, and metrology : Surface measurements, roughness
(180.1790) Microscopy : Confocal microscopy

ToC Category:
Research Papers

History
Original Manuscript: August 13, 2004
Revised Manuscript: September 26, 2004
Published: October 18, 2004

Citation
Weiqian Zhao, Jiubin Tan, and Lirong Qiu, "Bipolar absolute differential confocal approach to higher spatial resolution," Opt. Express 12, 5013-5021 (2004)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-21-5013


Sort:  Journal  |  Reset  

References

  1. C. H.Lee and J. P. Wang, �??Noninterferometric differential confocal microscopy with 2-nm depth resolution,�?? Opt. Commun. 135, 233�??237 (1997). [CrossRef]
  2. G. Udupa, M. Singaperumal, R. S. Sirohi, and M. P. Kothiyal, �??Characterization of surface topography by confocal microscopy: I. Principles and the measurement system,�?? Meas. Sci. Technol. 11, 305�??314 (2000). [CrossRef]
  3. G. Udupa, M. Singaperumal, R. S. Sirohi, and M. P. Kothiyal, �??Characterization of surface topography by confocal microscopy: II. The micro and macro surface irregularities,�?? Meas. Sci. Technol. 11, 315�??329 (2000). [CrossRef]
  4. L. Yang, G. Wang, J. Wang, and Z. Xu, �??Surface profilometry with a fibre optical confocal scanning microscope,�?? Meas. Sci. Technol. 11, 1786�??1791 (2000). [CrossRef]
  5. V. Mico, Z. Zalevsky, P. Garcia-Martinez, and J. Garcia, �??Single-step superresolution by interferometric imaging,�?? Opt. Express 12, 2589�??2596 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2589">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2589</a>. [CrossRef] [PubMed]
  6. R. W. Gerchberg, �??Superresolution through error energy reduction,�?? Opt. Acta 21, 709�??720 (1974). [CrossRef]
  7. C.-H. Lee, H.-Y. Chiang, and H.-Y. Mong, �??Sub-diffraction-limit imaqing based on the topographic contrast of differential confocal microscopy,�?? Opt. Lett. 28, 1772�??1774 (2003). [CrossRef] [PubMed]
  8. T. Wilson and S. J. Hewlett, �??Superresolution in confocal scanning microscopy,�?? Opt. Lett. 16, 1062�??1064 (1991). [CrossRef] [PubMed]
  9. T. R. M. Sales and G. M. Morris, �??Diffractive superresolution elements,�?? J. Opt. Soc. Am. A 14, 1637�??1646 (1997). [CrossRef]
  10. H. Wang and F. Gan, �??New approach to superresolution,�?? Opt. Eng. 40, 851�??855 (2001). [CrossRef]
  11. D. M. de Juana, J. E. Oti, V. F. Canales, and M. P. Cagigal, �??Design of superresolving continuous phase filters,�?? Opt. Lett. 28, 607�??609 (2003). [CrossRef] [PubMed]
  12. L. Liu, X. Deng, and G. Wang, �??Phase-only optical pupil filter for improving axial resolution in confocal microscopy,�?? Acta Phys. Sin. 50, 48�??51 (2001).
  13. X. Deng, G. Wang, and Z. Xu, �??3D superresolution pupil filter,�?? Chin. J. Lasers 28, 459�??462 (2001).
  14. T. R. M. Sales and G. M. Morris, �??Fundamental limits of optical superresolution,�?? Opt. Lett. 22, 582�??584 (1997). [CrossRef] [PubMed]
  15. M. Martinez-Corral, P. Andrés, C. J. Zapata-Rodriguez, and M. Kowalczyk, �??Three-dimensional superresolution by annular binary filters,�?? Opt. Commun. 165, 267�??278 (1999). [CrossRef]
  16. H. Liu, Y. Yan, Q. Tan, and G. Jin, �??Theories for the design of diffractive superresolution elements and limits of optical superresolution,�?? J. Opt. Soc. Am. A 19, 2185�??2193 (2002). [CrossRef]
  17. M. Martinez-Corral, C. Ibáñez-López, and G. Saavedra, �??Axial gain resolution in optical sectioning fluorescence microscopy by shaded-ring filters,�?? Opt. Express 11, 1740�??1745 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1740">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1740</a>. [CrossRef] [PubMed]
  18. F. Wang, J. Tan, and W. Zhao, �??Optical probe using differential confocal technique for surface profile measurement,�?? in Process Control and Inspection for Industry, S. Zhang and W. Gao, eds., Proc. SPIE 4222, 194�??197 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited