OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 21 — Oct. 18, 2004
  • pp: 5067–5081

Femtosecond light pulse propagation through metallic nanohole arrays: The role of the dielectric substrate

Roland Müller, Claus Ropers, and Christoph Lienau  »View Author Affiliations


Optics Express, Vol. 12, Issue 21, pp. 5067-5081 (2004)
http://dx.doi.org/10.1364/OPEX.12.005067


View Full Text Article

Enhanced HTML    Acrobat PDF (677 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study theoretically ultrafast light propagation through a periodic array of holes in a silver film deposited on a dielectric substrate using a three-dimensional finite-difference time-domain (FDTD) simulation. We focus on studying the effects of the coherent coupling between resonant surface plasmon polariton (SPP) excitations at the top and bottom interfaces of the metal film on the transmission dynamics. In a free standing film, the SPP excitations at both interfaces are fully in resonance and pronounced temporal oscillations in the energy flow between the bottom and top interfaces give evidence for coupling between the (±1,0) SPP modes via photon tunneling through the holes. Variation of the dielectric constant of the substrate lifts the energetic degeneracy between the two modes and thus decreases the coupling and suppresses the energy oscillations. New SPP-enhanced transmission peaks appear when higher order modes at the substrate/metal interface are brought into resonance with the (±1,0) air/metal resonance and efficient mode coupling is achieved. Both temporal transmission dynamics and near-field mode profiles are reported and their implications for tailoring the optical properties of these two-dimensional plasmonic crystals are discussed.

© 2004 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(240.6680) Optics at surfaces : Surface plasmons
(310.6860) Thin films : Thin films, optical properties
(320.2250) Ultrafast optics : Femtosecond phenomena

ToC Category:
Research Papers

History
Original Manuscript: July 16, 2004
Revised Manuscript: October 2, 2004
Published: October 18, 2004

Citation
Roland Müller, Claus Ropers, and Christoph Lienau, "Femtosecond light pulse propagation through metallic nanohole arrays: The role of the dielectric substrate," Opt. Express 12, 5067-5081 (2004)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-21-5067


Sort:  Journal  |  Reset  

References

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  2. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998). [CrossRef]
  3. S. C. Kitson, W. L. Barnes, and J. R. Sambles, "Full photonic band gap for surface modes in the visible,"Phys. Rev. Lett. 77, 2670-2673 (1996). [CrossRef] [PubMed]
  4. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6224-6227 (1996). [CrossRef]
  5. U. Schröter and D. Heitmann, "Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration, �?? Phys. Rev. B 60, 4992-4999 (1999). [CrossRef]
  6. D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K .J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, "Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures," Phys. Rev. Lett. 91, 143901 (2003). [CrossRef] [PubMed]
  7. H. Raether, Surface plasmons, Springer Tracts in Modern Physics Vol. 111, (Springer, Berlin, 1988).
  8. U. Schröter and D. Heitmann, "Surface-plasmon-enhanced transmission through metallic gratings," Phys. Rev. B 58, 15419-15421 (1998). [CrossRef]
  9. M. M. J. Treacy, "Dynamical diffraction in metallic optical gratings," Appl. Phys. Lett. 75, 606-608 (1999). [CrossRef]
  10. J. A. Porto, F. J. Garcia�??Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999). [CrossRef]
  11. Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403 (2002). [CrossRef] [PubMed]
  12. E. Popov, M. Neviere, S. Enoch, and R. Reinisch, "Theory of light transmission through subwavelength periodic hole arrays," Phys. Rev. B 62, 16100-16108 (2000). [CrossRef]
  13. L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,". Phys. Rev. Lett. 86, 1110-1113 (2001). [CrossRef] [PubMed]
  14. L. Martin �?? Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001). [CrossRef] [PubMed]
  15. S. Enoch, E. Popov, M. Neviere, and R. Reinisch, "Enhanced light transmission by hole arrays," J. Opt. A: Pure Appl. Opt. 4, S83-S87 (2002). [CrossRef]
  16. S. A. Darmanyan and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study," Phys. Rev. B 67, 035424 (2003). [CrossRef]
  17. F. I. Baida and D .Van Labeke, �??Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays,�?? Phys. Rev.B 67, 155314 (2003). [CrossRef]
  18. A. V. Zayats and I. I. Smolyaninov, "Near-field photonics:surface plasmon polaritons and localized surface plasmons, " J.. Opt. A: Pure Appl. Opt. 5, S16-S50 (2003). [CrossRef]
  19. P. N. Stavrinou and L. Solymar, "Pulse delay and propagation through subwavelength metallic slits," Phys. Rev. E 68, 066604 (2003). [CrossRef]
  20. A. Dechant and A.Y.Elezzabi, �??Femtosecond optical pulse propagation in subwavelength metallic slits,�?? Appl. Phys. Lett. 84 , 4678-4680 (2004). [CrossRef]
  21. R. Müller, V. Malyarchuk, and C. Lienau, "A three-dimensional theory on light-induced near-field dynamics in a metal film with a periodic array of nanoholes," Phys. Rev. B 68, 205415 (2003). [CrossRef]
  22. S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Müller, Ch. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, "Light emission from the shadows: surface plasmon nano-optics at near and far fields," Appl. Phys. Lett. 81, 3239-3241 (2002). [CrossRef]
  23. A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Evanescently coupled resonance in surface plasmon enhanced transmission," Opt. Comm. 200, 1-7 (2001). [CrossRef]
  24. A. Dogariu, T. Thio, L. J. Wang, T. W. Ebbesen, and H. J. Lezec, "Delay in light transmission through small apertures," Opt. Lett. 26, 450-452 (2001). [CrossRef]
  25. H. Cao and A. Nahata, �?? Influence of aperture shape on the transmission properties of a periodic array of subwavelength apertures,�?? Opt. Express 12, 3664-3672 (2004). [CrossRef] [PubMed]
  26. P. B. Johnson and R. W. Christy, "Optical constants of noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  27. E. D. Palik (Ed.), Handbook of optical constants of solids (Academic Press, San Diego,1985)
  28. B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, and F. R. Aussenegg, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett. 79, 51-53 (2001). [CrossRef]
  29. A. Taflove and S. C. Hagness, Computational Electrodynamics. The Finite- Difference Time-Domain Method, 2nd ed. (Artech House, Boston. 2000).
  30. St. A. Cummer, �??An analysis of new and existing FDTD methods for isotropic cold plasma and a method for improving their accuracy,�?? IEEE Trans. Antennas Propag. 45, 392-400 (1997). [CrossRef]
  31. R. E. Collin, Field theory of guided waves (Mc Graw-Hill, New York, 1960).
  32. H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944). [CrossRef]
  33. C. J. Bouwkamp, "On Bethe's theory of diffraction by small holes," Philips Res. Rep. 5. 321-332 (1950).
  34. M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, "Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes," Phys. Rev. B. 67, 085415 (2003) [CrossRef]
  35. C. Genet, M. P. van Exter, and J. P. Woerdman, "Fano-type interpretation of red shifts and red tails in hole array transmission spectra," Opt. Commun. 225, 331-336 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (3890 KB)     
» Media 2: AVI (3409 KB)     
» Media 3: AVI (2802 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited