OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 21 — Oct. 18, 2004
  • pp: 5110–5116

Determination of nonlinear refractive index in a Ta2O5 rib waveguide using self-phase modulation

Chao-Yi Tai, James S. Wilkinson, Nicolas M. B. Perney, M. Caterina Netti, F. Cattaneo, Chris E. Finlayson, and Jeremy J. Baumberg  »View Author Affiliations


Optics Express, Vol. 12, Issue 21, pp. 5110-5116 (2004)
http://dx.doi.org/10.1364/OPEX.12.005110


View Full Text Article

Enhanced HTML    Acrobat PDF (144 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Self-phase modulation has been observed for ultrashort pulses of wavelength 800nm propagating through a 1 cm-long Ta2O5 rib waveguide. The associated nonlinear refractive index n2 was estimated to be 7.23×10-19 m2/W, which is higher than silica glass by more than one order of magnitude. Femtosecond time of flight measurements based on a Kerr shutter configuration show that the group velocity dispersion is small at a wavelength of 800 nm, confirming that dispersion may be neglected in the estimation of n2 so that a simplified theory can be used with good accuracy.

© 2004 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(190.0190) Nonlinear optics : Nonlinear optics

ToC Category:
Research Papers

History
Original Manuscript: August 13, 2004
Revised Manuscript: October 4, 2004
Published: October 18, 2004

Citation
Chao-Yi Tai, James Wilkinson, Nicolas Perney, M. Netti, F. Cattaneo, Chris Finlayson, and Jeremy Baumberg, "Determination of nonlinear refractive index in a Ta2O5 rib waveguide using self-phase modulation," Opt. Express 12, 5110-5116 (2004)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-21-5110


Sort:  Journal  |  Reset  

References

  1. B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, �??Alloptical Gbit/s switching using nonlinear optical loop mirror,�?? Electron. Lett. 27, 704-705 (1991). [CrossRef]
  2. A. Samoc, M. Samoc, M. Woodruff, and B. Luther-Davies, �??Tuning the properties of poly(pphenylenevinylene) for use in all-optical switching,�?? Opt. Lett. 20, 1241-1243 (1995). [CrossRef] [PubMed]
  3. M. Asobe, I. Yokohama, T. Kaino, S. Tomaru, and T. Kurihara, �??Nonlinear absorption and refraction in an organic-dye functionalized main-chain polymer wave-guide in the 1.5 m wavelength region,�?? Appl. Phys. Lett. 67, 891-893 (1995). [CrossRef]
  4. T. Gabler, R. Waldhäusl, A. Bräuer, F. Michelotti, H. �??H. Hörhold, and U. Bartuch, "Spectral broadening measurements in poly(phenylene vinylene) polymer channel waveguides,�?? Appl. Phys. Lett. 70, 928-930 (1997). [CrossRef]
  5. M. Asobe, K. Suzuki, T. Kanamori, and K. Kubodera, �??Nonlinear refractive-index measurement in chalcogenide-glass fibers by self-phase modulation,�?? Appl. Phys. Lett. 60, 1153-1154 (1992). [CrossRef]
  6. T. Kobayashi, Nonlinear Optics of Organics and Semiconductors (Springer, Berlin, 1989). [CrossRef]
  7. P. C. Joshi and M. W. Cole, �??Influence of postdeposition annealing on the enhanced structural and electrical properties of amorphous and crystalline Ta2O5 thin films for dynamic random access memory applications,�?? J. Appl. Phys. 86, 871-880 (1999). [CrossRef]
  8. E. Franke, C. L. Trimble, M. J. DeVries, J. A. Woollam, M. Schubert, and F. Frost, �??Dielectric function of amorphous tantalum oxide from the far infrared to the deep ultraviolet spectral region measured by spectroscopic ellipsometry,�?? J. Appl. Phys. 88, 5166-5174 (2000). [CrossRef]
  9. J. Jasapara, A. V. V. Nampoothiri, and W. Rudolph, �??Femtosecond laser pulse induced breakdown in dielectric thin films,�?? Phys. Rev. B 63, 045117 (2001). [CrossRef]
  10. G. P. Agrawal, Nonlinear Fiber Optics, (Academic, San Diego, 1989).
  11. P. N. Kean, K. Smith, and W. Sibbett, �??Spectral and temporal investigation of self-phase modulation and stimulated Raman scattering in a single-mode optical fibre,�?? IEE Proc. J. Optoelectron. 134, 163-170 (1987). [CrossRef]
  12. B. M. Foley, P. Melman, and K. T. Vo, �??Novel loss measurement technique for optical wave-guides by imaging of scattered-light,�?? Electron. Lett. 28, 584-585 (1992). [CrossRef]
  13. J. Requejo-Isidro, A. K. Mairaj, V. Pruneri, D. W. Hewak, M. C. Netti, and J. J. Baumberg, �??Self-refractive non-linearities in chalcogenide based glasses,�?? J. Non-Cryst. Solids 317, 241-246 (2003). [CrossRef]
  14. M. Asobe, T. Kanamori, and K. Kubodera, �??Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,�?? IEEE J Quantum Electron. 29, 2325-2333 (1993). [CrossRef]
  15. M, C. Netti, C. E. Finlayson, J. J. Baumberg, M. D. B. Charlton, M. E. Zoorob, J. S. Wilkinson and G. J. Parker, �??Separation of photonic crystal waveguides modes using femtosecond time-of-flight,�?? Appl. Phys. Lett. 81, 3927-3929 (2002). [CrossRef]
  16. J. Takeda, K. Nakajima, and S. Kurita, �??Time-resolved luminescence spectroscopy by the optical Kerr-gate method applicable to ultrafast relaxation processes,�?? Phys. Rev. B 62, 10083-10087 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited