OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 21 — Oct. 18, 2004
  • pp: 5117–5124

Direct spectral phase function calculation for dispersive interferometric thickness profilometry

Daesuk Kim and Soohyun Kim  »View Author Affiliations


Optics Express, Vol. 12, Issue 21, pp. 5117-5124 (2004)
http://dx.doi.org/10.1364/OPEX.12.005117


View Full Text Article

Enhanced HTML    Acrobat PDF (580 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A direct spectral phase function calculation method based on spectral phase shifting is described. We show experimentally that the direct phase function calculation method can provide a simple and fast solution in calculating the spectral phase function, while maintaining the same level of accurate measurement capability as that based on the Fourier transform approach.

© 2004 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation

ToC Category:
Research Papers

History
Original Manuscript: September 8, 2004
Revised Manuscript: October 4, 2004
Published: October 18, 2004

Citation
Daesuk Kim and Soohyun Kim, "Direct spectral phase function calculation for dispersive interferometric thickness profilometry," Opt. Express 12, 5117-5124 (2004)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-21-5117


Sort:  Journal  |  Reset  

References

  1. K. Creath, �??Temporal phase measuring methods,�?? in Interferogram Analysis: Digital Fringe Pattern Measurement Techniques, D. W. Robinson and G. T. Reid, eds. (Institute of Physics, Bristol, UK, 1993).
  2. Y. Ishii, J. Chen, and K. Murata, �??Digital phase-measuring interferometry with a tunable laser diode,�?? Opt. Lett. 12, 233-235 (1988). [CrossRef]
  3. Hariharan P., Roeb. B and T. Eiju, �??Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,�?? Appl. Opt. 26, 2504-2506 (1987). [CrossRef] [PubMed]
  4. P. de Groot and L. Deck, �??Three-dimensional imaging by sub-Nyquist sampling of white-light interferomgrams,�?? Opt. Lett. 18, 1462-1464 (1993). [CrossRef] [PubMed]
  5. J. Schwider and L. Zhou, �??Dispersive interferometric profilometer,�?? Opt. Lett. 19, 995-997 (1994). [CrossRef] [PubMed]
  6. M. Kinoshita, M. Takeda, H. Yago, Y. Watanabe, and T. Kurokawa, �??Optical frequency-domain microprofilometry with a frequency-tunable liquid-crystal Fabry-Perot etalon device,�?? Appl. Opt. 38, 7063-7068 (1999). [CrossRef]
  7. I. Yamaguchi, �??Surface tomography by wavelength scanning interferometry,�?? Opt. Eng. 39, 40-46 (2000). [CrossRef]
  8. D. S. Mehta, S. Saito, H. Hinosugi, M. Takeda, and T. Kurokawa, �??Spectral interference Mirau microscope with an acousto-optic tunable filter for three-dimensional surface profilometry,�?? Appl. Opt. 42, 1296-1305 (2003). [CrossRef] [PubMed]
  9. D. Kim, S. Kim, H. Kong and Y. Lee, �??Measurement of the thickness profile of a transparent thin film deposited upon a pattern structure with an acousto-optic tunable filter,�?? Opt. Lett. 27, 1893-1895 (2002). [CrossRef]
  10. S. W. Kim, G.H. Kim, �??Thickness profile measurement of transparent thin-film layers by white-light scanning interferometry,�?? Appl. Opt. 38, 5968-5973 (1999). [CrossRef]
  11. . M. Takeda, Hideki Ina and Seiji Kobayashi, �??Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,�?? J. Opt. Soc. Am. 72, 156 -160 (1982). [CrossRef]
  12. T. Kreis, �??Digital holographic interference-phase measurement using the Fourier-transform method,�?? J. Opt. Soc. Am. A 3, 847-855 (1986). [CrossRef]
  13. G. Pedrini, I. Alexeenko, W. Osten, and H. J. Tiziani, �??Temporal phase unwrapping of digital hologram sequences,�?? Appl. Opt. 42, 5846-5854 (2003). [CrossRef] [PubMed]
  14. The Levenberg-Marquardt algorithm is available as lsqnonlin function by a commercial S/W MATLAB.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited