OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 21 — Oct. 18, 2004
  • pp: 5198–5208

Wide-field retinal hemodynamic imaging with the tracking scanning laser ophthalmoscope

R. Daniel Ferguson, Daniel X. Hammer, Ann E. Elsner, Robert H. Webb, Stephen A. Burns, and John J. Weiter  »View Author Affiliations

Optics Express, Vol. 12, Issue 21, pp. 5198-5208 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (3332 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Real time, high-speed image stabilization with a retinal tracking scanning laser ophthalmoscope (TSLO) enables new approaches to established diagnostics. Large frequency range (DC to 19 kHz), wide-field (40-deg) stabilized Doppler flowmetry imaging was demonstrated in initial human subject tests. The fundus imaging method is a quasi-confocal line-scanning laser ophthalmoscope (LSLO). The retinal tracking system uses a confocal reflectometer with a closed loop optical servo system to lock onto features in the ocular fundus and automatically re-lock after blinks. By performing a slow scan with the laser line imager, frequency-resolved retinal perfusion and vascular flow images were obtained free of eye motion artifacts. Normal adult subjects and patients were tested with and without mydriasis to characterize flow imaging performance.

© 2004 Optical Society of America

OCIS Codes
(170.3340) Medical optics and biotechnology : Laser Doppler velocimetry
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4470) Medical optics and biotechnology : Ophthalmology

ToC Category:
Research Papers

Original Manuscript: August 31, 2004
Revised Manuscript: October 4, 2004
Published: October 18, 2004

R. Ferguson, Daniel Hammer, Ann Elsner, Robert Webb, Stephen Burns, and John Weiter, "Wide-field retinal hemodynamic imaging with the tracking scanning laser ophthalmoscope," Opt. Express 12, 5198-5208 (2004)

Sort:  Journal  |  Reset  


  1. J. J. Weiter, R. A. Schachar, and J. T. Ernest, �??Control of intraocular blood flow, I. Intraocular pressure,�?? Invest Ophthalmol. 12, 327-331 (1973). [PubMed]
  2. A. Alm, �??Ocular circulation,�?? in Alder�??s Physiology of the Eye. Clinical Applications, W. M. Hart, ed. (Mosby-Year Book, St. Louis, 1992).
  3. M. E. Hartnett, J. J. Weiter, G. Staurenghi, and A. E. Elsner, �??Deep retinal vascular anomalous complexes in advanced age-related macular degeneration,�?? Ophthalmol., 103, 2042-2053 (1996).
  4. A. E. Elsner, D. Bartsch, J. J. Weiter, M. E. Hartnett, �??New devices in retinal imaging and functional evaluation,�?? in Practical Atlas of Retinal Disease and Therapy, W. Freeman, ed. (Lippincott-Raven, New York, 1998).
  5. D. Gabor, �??Laser speckle and its elimination,�?? IBM J. Res. Dev. 14, 509-514 (1970). [CrossRef]
  6. A. F. Fercher and J. D. Briers, �??Flow visualization by means of single-exposure speckle photography,�?? Opt. Commun. 37, 326-329 (1981). [CrossRef]
  7. A. E. Ennos, �??Speckle interferometry,�?? in Laser Speckle and Related Topics, J. C. Dainty, ed. (Springer-Verlag, Berlin,1984).
  8. J. W. Goodman, �??Statistical properties of laser speckle patterns,�?? in Laser Speckle and Related Topics, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984).
  9. J. D. Briers, �??Speckle fluctuations and biomedical optics: implications and applications,�?? Opt. Eng. 32, 277-283 (1993). [CrossRef]
  10. R. Bonner and R. Nossal, �??Model for laser Doppler measurements of blood flow in tissue,�?? Appl. Opt. 20, 2097-2107 (1981). [CrossRef] [PubMed]
  11. C. Riva, B. Ross, and G. Benedek, �??Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,�?? Invest. Ophthalmol. 11, 936-944 (1972). [PubMed]
  12. T. Tanaka, C. Riva, and I. Ben-Sira, �??Blood velocity measurements in human retinal vessels,�?? Science 186, 830-832 (1974). [CrossRef] [PubMed]
  13. N. Konishi and H. Fujii, �??Real-time visualization of retinal microcirculation by laser flowgraphy,�?? Opt. Eng. 34, 753-757 (1995). [CrossRef]
  14. J. D. Briers, G. Richards and X. W. He, �??Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),�?? J. Biomed. Opt. 4, 164-175 (1999). [CrossRef] [PubMed]
  15. G. Michelson, B. Schmauss, M.J. Langhans, J. Harazny, M.J.M. Groh, �??Principle, validity, and reliability of scanning laser Doppler flowmetry,�?? J. Glaucoma 5, 99-105 (1996). [CrossRef] [PubMed]
  16. G. Michelson, J. Welzenbach, I. Pal, J. Harazny, �??Functional imaging of the retinal microvasculature by scanning laser Doppler flowmetry,�?? Int. Ophthalmol. 23, 327-335 (2001). [CrossRef]
  17. X. J. Wang, T. E. Milner, and J. S. Nelson, �??Characterization of fluid flow velocity by optical Doppler tomography,�?? Opt. Lett. 20, 1337-1339 (1995). [CrossRef] [PubMed]
  18. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, �??In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,�?? Opt. Lett. 22, 1439-1441 (1997). [CrossRef]
  19. T. G. van Leeuwen, M. D. Kulkarni, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, �??High-flow-velocity and shear-rate imaging by use of color Doppler optical coherence tomography,�?? Opt. Lett. 24, 1584-1586 (1999). [CrossRef]
  20. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, �??Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography,�?? Opt. Lett. 25, 1448-1450 (2000). [CrossRef]
  21. B. R White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, �?? In vivo dynamic human retinal blood flow imaging using ultra-high speed spectral domain optical coherence tomography,�?? Opt. Express 11, 3490 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490.</a> [CrossRef] [PubMed]
  22. D. X. Hammer, R.D. Ferguson, T. Ustun, G. Dadusc, R.H. Webb, �??Hand-held digital line-scanning laser ophthalmoscope (LSLO),�?? in Ophthalmic Technologies XIV, F. Manns, P. G. Söderberg, A. Ho, eds., Proc. SPIE 5314, 161-169 (2004).
  23. R. Daniel Ferguson, �??Servo tracking system utilizing phase-sensitive detection of reflectance variation,�?? U.S. Patents #5,767,941 and #5,943,115.
  24. D. X. Hammer, R. D. Ferguson, J. C. Magill, M. A. White, A. E. Elsner, and R. H. Webb, �??Image stabilization for scanning laser ophthalmoscopy,�?? Opt. Express 10, 1542-1549 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-26-1542">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-26-1542.</a> [CrossRef] [PubMed]
  25. D. X. Hammer, R. D. Ferguson, J. C. Magill, M. A. White, A. E. Elsner, and R. H. Webb, �??Compact scanning laser ophthalmoscope with high speed retinal tracker,�?? Appl. Opt. 42, 4621-4632 (2003). [CrossRef] [PubMed]
  26. B. L. Petrig and C. E. Riva, �??Retinal laser Doppler velocimetry: toward its computer-assisted clinical use,�?? Appl. Opt. 27, 1126-1134 (1988). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (2281 KB)     
» Media 2: AVI (2295 KB)     
» Media 3: AVI (1981 KB)     
» Media 4: AVI (2218 KB)     
» Media 5: AVI (3056 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited