OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 22 — Nov. 1, 2004
  • pp: 5287–5295

Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source

Pei-Lin Hsiung, Yu Chen, Tony H. Ko, James G. Fujimoto, Christiano J.S. de Matos, Sergei V. Popov, James R. Taylor, and Valentin P. Gapontsev  »View Author Affiliations

Optics Express, Vol. 12, Issue 22, pp. 5287-5295 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (1593 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High performance, short coherence length light sources with broad bandwidths and high output powers are critical for high-speed, ultrahigh resolution OCT imaging. We demonstrate a new, high performance light source for ultrahigh resolution OCT. Bandwidths of 140 nm at 1300 nm center wavelength with high output powers of 330 mW are generated by an all-fiber Raman light source based on a continuous-wave Yb-fiber laser-pumped microstructure fiber. The light source is compact, robust, turnkey and requires no optical alignment. In vivo, ultrahigh resolution, high-speed, time domain OCT imaging with <5 µm axial resolution is demonstrated.

© 2004 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Research Papers

Original Manuscript: August 19, 2004
Revised Manuscript: October 5, 2004
Published: November 1, 2004

Pei-Lin Hsiung, Yu Chen, Tony Ko, James Fujimoto, Christiano de Matos, Sergei Popov, James Taylor, and Valentin Gapontsev, "Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source," Opt. Express 12, 5287-5295 (2004)

Sort:  Journal  |  Reset  


  1. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. J.G. Fujimoto, "Optical coherence tomography for ultrahigh resolution in vivo imaging," Nat. Biotechnol. 21, 1361-1367 (2003). [CrossRef] [PubMed]
  3. B. Bouma, G.J. Tearney, S.A. Boppart, M.R. Hee, M.E. Brezinski, and J.G. Fujimoto, "High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source," Opt. Lett. 20, 1486-1488 (1995). [CrossRef] [PubMed]
  4. W. Drexler, U. Morgner, F.X. Kartner, C. Pitris, S.A. Boppart, X.D. Li, E.P. Ippen, and J.G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999). [CrossRef]
  5. I. Hartl, X.D. Li, C. Chudoba, R.K. Ghanta, T.H. Ko, J.G. Fujimoto, J.K. Ranka, and R.S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001). [CrossRef]
  6. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A.F. Fercher, W. Drexler, A. Apolonski, W.J. Wadsworth, J.C. Knight, P.S.J. Russell, M. Vetterlein, and E. Scherzer, "Submicrometer axial resolution optical coherence tomography," Opt. Lett. 27, 1800-1802 (2002). [CrossRef]
  7. Y.M. Wang, Y.H. Zhao, J.S. Nelson, Z.P. Chen, and R.S. Windeler, "Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber," Opt. Lett. 28, 182-184 (2003). [CrossRef] [PubMed]
  8. A.M. Kowalevicz, Jr., T.R. Schibli, F.X. Kartner, and J.G. Fujimoto, "Ultralow-threshold Kerr-lens modelocked Ti:Al2O3 laser," Opt. Lett. 27, 2037-2039 (2002). [CrossRef]
  9. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E.M. Anger, P.K. Ahnelt, M. Stur, J.E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, "Compact, lowcost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 28, 905-907 (2003). [CrossRef] [PubMed]
  10. K. Bizheva, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamberger, "Compact, broad-bandwidth fiber laser for sub-2-micron axial resolution optical coherence tomography in the 1300-nm wavelength region," Opt. Lett. 28, 707-709 (2003). [CrossRef] [PubMed]
  11. J.M. Schmitt, A. Knuttel, M. Yadlowsky, and M.A. Eckhaus, "Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering," Phys. Med. Biol. 39, 1705-1720 (1994). [CrossRef] [PubMed]
  12. B.E. Bouma, G.J. Tearney, I.P. Bilinsky, B. Golubovic, and J.G. Fujimoto, "Self-phase-modulated Kerr-lens mode-locked Cr:Forsterite laser source for optical coherence tomography," Opt. Lett. 21, 1839-1841 (1996). [CrossRef] [PubMed]
  13. S. Bourquin, A.D. Aguirre, I. Hartl, P. Hsiung, T.H. Ko, and J.G. Fujimoto, "Compact broadband light source for ultra high resolution optical coherence tomography imaging using a femtosecond Nd:Glass laser and a nonlinear fiber," Opt. Express 11, 3290-3297 (2003). [CrossRef] [PubMed]
  14. K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Weber, and R.S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904-1-113904-4 (2003). [CrossRef]
  15. L. Provino, J.M. Dudley, H. Maillotte, N. Grossard, R.S. Windeler, and B.J. Eggleton, "Compact broadband continuum source based on microchip laser-pumped microstructured fibre," Electron. Lett. 37, 558-560 (2001). [CrossRef]
  16. P.A. Champert, S.V. Popov, and J.R. Taylor, "Generation of multiwatt, broadband continua in holey fibers," Opt. Lett. 27, 122-124 (2002). [CrossRef]
  17. A.V. Avdokhin, S.V. Popov, and J.R. Taylor, "Continuous-wave, high-power, Raman continuum generation in holey fibers," Opt. Lett. 28, 1353-1355 (2003). [CrossRef] [PubMed]
  18. G.L. Abbas, V.W.S. Chan, and T.K. Yee, "Local-oscillator excess-noise suppression for homodyne and heterodyne detection," Opt. Lett. 8, 419-421 (1983). [CrossRef] [PubMed]
  19. A. Knuttel and M. Boehlau-Godau, "Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography," J. Biomed. Opt. 5, 83-92 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MPG (2357 KB)     
» Media 2: AVI (8328 KB)     
» Media 3: AVI (2371 KB)     
» Media 4: AVI (6196 KB)     
» Media 5: AVI (2336 KB)     
» Media 6: AVI (8306 KB)     
» Media 7: AVI (6196 KB)     
» Media 8: AVI (1747 KB)     
» Media 9: AVI (1747 KB)     
» Media 10: MPG (2296 KB)     
» Media 11: AVI (6024 KB)     
» Media 12: MPG (2167 KB)     

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited