OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 22 — Nov. 1, 2004
  • pp: 5440–5447

Compact tunable microfluidic interferometer

C. Grillet, P. Domachuk, V. Ta’eed, E. Mägi, J. A. Bolger, B. J. Eggleton, L. E. Rodd, and J. Cooper-White  »View Author Affiliations


Optics Express, Vol. 12, Issue 22, pp. 5440-5447 (2004)
http://dx.doi.org/10.1364/OPEX.12.005440


View Full Text Article

Enhanced HTML    Acrobat PDF (283 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a compact tunable filter based on a novel microfluidic single beam Mach-Zehnder interferometer. The optical path difference occurs during propagation across a fluid-air interface (meniscus), the inherent mobility of which provides tunability. Optical losses are minimized by optimizing the meniscus shape through surface treatment. Optical spectra are compared to a 3D beam propagation method simulations and good agreement is found. Tunability, low insertion loss and strength of the resonance are well reproduced. The device performance displays a resonance depth of -28 dB and insertion loss maintained at -4 dB.

© 2004 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(130.6010) Integrated optics : Sensors

ToC Category:
Research Papers

History
Original Manuscript: September 21, 2004
Revised Manuscript: October 21, 2004
Published: November 1, 2004

Citation
Christian Grillet, P. Domachuk, V. Ta'eed, E. Mägi, J. Bolger, B. Eggleton, L. Rodd, and J. Cooper-White, "Compact tunable microfluidic interferometer," Opt. Express 12, 5440-5447 (2004)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-22-5440


Sort:  Journal  |  Reset  

References

  1. D. Sadot and E. Boimovich,�??Tunable optical filters for dense WDM networks,�?? IEEE Commun. Mag. 36, 50-55 (1998). [CrossRef]
  2. M. G. Xu, H. Geiger and J. Dakin,�??Interrogation of fiber-optic interferometric sensors using acousto-optic tunable filter,�?? Electron. Lett. 31, 1487-1488 (1995). [CrossRef]
  3. P.Luginbuhl, �??Femtoliter injector for DNA mass spectrometry,�?? Sens. Actuators B 63, 167-177 (2000) [CrossRef]
  4. N. Nguyen and S. Wereley, Microfluidics (Artech House, Boston, MA, 2002).
  5. . Lee, H. Moon, J. Fowler, T. Schoellhammer, C. Kim,�??Electrowetting and electrowetting-on-dielectric for microscale liquid handling,�?? Sens. Actuators A. 95, 259-268 (2002). [CrossRef]
  6. H. Cao, J. O. Tegenfeldt, R. H. Austin, and S. Y. Chou,�??Gradient nanostructures for interfacing microfluidics and nanofluidics,�?? Appl. Phys. Lett. 81, 3058-3060 (2002). [CrossRef]
  7. Z. L. Tang, S. B. Hong, D. Djukic, V. Modi, A. C. West, J. Yardley, and R. M. Osgood,�??Electrokinetic flow control for composition modulation in a microchannel,�?? J. Micromech. Microeng. 12, 870-877 (2002). [CrossRef]
  8. J.E. Fouquet, S. Venkatesh, M. Troll, D. Chen, H.F. Wong, P.W. Barth, �??A compact, scalable cross-connect switch using total internal reflection due to thermally-generated bubbles,�?? Lasers and Electro-Optics Society Annual Meeting, 1998. IEEE. 2, 169-170 (1998).
  9. C. Kerbage and B.J. Eggleton, �??Microstructured optical fibers: Enabling integrated tunability for photonic devices,�?? Opt. Photon. News, September Issue, 38-43 (2002). [CrossRef]
  10. C. E. Kerbage and B. J. Eggleton, �??Tunable microfluidic optical fiber grating,�?? Appl. Phys. Lett. 82, 1332-1334 (2003). [CrossRef]
  11. P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub and M. Gu,�??Microfluidic tunable photonic band-gap device,�?? Appl. Phys. Lett. 84, 1838-1840 (2004). [CrossRef]
  12. P. Friis, K. Hoppe, O. Leistiko, K. B. Mogensen, J. Hubner, and J. P. Kutter, �??Monolithic integration of microfluidic channels and optical waveguides in silica on silicon,�?? Applied Optics 40, 6246-6251, (2001). [CrossRef]
  13. S. Camou, H. Fujita and T. Fujii,�??PDMS 2D optical lens integrated with microfluidic channels:principle and characterization,�?? Lab Chip 3, 40-45 (2003) [CrossRef]
  14. J. Hsieh, P. Mach, F. Cattaneo, S. Yang, T. Krupenkine, K. Baldwin, J.A. Rogers, �??Tunable microfluidic optical-fiber devices based on electrowetting pumps and plastic microchannels,�?? IEEE Photon. Technol. Lett. 15, 81-83 (2003). [CrossRef]
  15. V. Lien, Y. Berdichevsky, and Y-H. Lo, �??A prealigned process of integrating optical waveguides with microfluidic devices,�?? IEEE Photon. Technol. Lett. 16, 1525-1527 (2004). [CrossRef]
  16. S. Campopiano, R. Bernini, L. Zeni, P. Sarro,�??Microfluidic sensor based on integrated optical hollow waveguides,�?? Opt. Lett. 29, 1894-1896 (2004). [CrossRef] [PubMed]
  17. H. C. Nguyen, P. Domachuk, B. J. Eggleton, M. J. Steel, M. Straub, M. Gu, and M. Sumetsky, "A new slant on photonic crystal fibers," Opt. Express 12, 1528-1539 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1528.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1528</a> [CrossRef] [PubMed]
  18. R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, �??Numerical techniques for modeling guided-wave photonic devices,�?? IEEE J. Sel. Top. Quantum Electron. 6, 150 (2000). [CrossRef]
  19. R. Scarmozzino and R. Osgood, �??Comparison of finite difference and Fourier-transform solutions of the parabolic wave equation with emphasis on integrated-optics applications,�?? J. Opt. Soc. Am. A 8, 724 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited