OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 22 — Nov. 1, 2004
  • pp: 5481–5486

Integrated plasmon and dielectric waveguides

Michael Hochberg, Tom Baehr-Jones, Chris Walker, and Axel Scherer  »View Author Affiliations

Optics Express, Vol. 12, Issue 22, pp. 5481-5486 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (1129 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have designed, fabricated and characterized surface plasmon waveguides for near infrared light in the telecommunications spectrum. These waveguides exhibit losses of -1.2dB/µm and can guide light around 0.5 µm bends. Light can also be efficiently coupled between more conventional silicon waveguides and these plasmon waveguides with compact couplers, and we demonstrate that surface plasmon optical devices can be constructed by using planar circuit fabrication techniques. The large optical field enhancements of metallic surface plasmon devices are expected to lead to a new class of plasmonic optical devices, which will take advantage of the large field enhancements at the surfaces of the plasmon waveguides for nonlinear or sensing functionality, while utilizing the low losses available in silicon waveguides to move light longer distances on chip.

© 2004 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Research Papers

Original Manuscript: September 8, 2004
Revised Manuscript: October 22, 2004
Published: November 1, 2004

Michael Hochberg, Tom Baehr-Jones, Chris Walker, and Axel Scherer, "Integrated plasmon and dielectric waveguides," Opt. Express 12, 5481-5486 (2004)

Sort:  Journal  |  Reset  


  1. J. Takahara, Y. Suguru, T. Hiroaki, A. Morimoto, and T. Kobayashi, �??Guiding of a one-dimensional optical beam with nanometer diameter,�?? Opt. Lett 22, 475-477 (1997). [CrossRef] [PubMed]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, �??Surface Plasmon Subwavelength Optics,�?? Nature 424, 824 -830 (2003). [CrossRef] [PubMed]
  3. Palik, E., Handbook of Optical Constants of Solids (Academic Press, Washington, D.C., 1985).
  4. T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. Bozhevolnyi, �??Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,�?? Appl. Phys. Lett. 82, 668-670 (2003). [CrossRef]
  5. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, E. E. Koel, and A. A. Requicha, �??Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,�?? Nature Mat. 2, 229-232 (2003). [CrossRef]
  6. P. Berini, �??Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,�?? Phys. Rev. B 61, 10484-10503 (2000). [CrossRef]
  7. T. Baehr-Jones, M. Hochberg, C. Walker and A. Scherer, �??High-Q ring resonators in thin silicon-oninsulator,�?? Appl. Phys. Lett. 85, (2004). [CrossRef]
  8. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, S. I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, �??An Out-of-Plane Grating Coupler for Efficient Butt-Coupling Between Compact Planar Waveguides and Single-Mode Fibers,�?? IEEE J. Quantum Electron. 38, 949 (2002). [CrossRef]
  9. V. Almeida, R. Panepucci, and M. Lipson �??Nanotaper for compact mode conversion,�?? Opt. Lett. 28, 1302-1304 (2003). [CrossRef] [PubMed]
  10. T. Baehr-Jones, M. Hochberg, and A. Scherer, �??A Distributed Implementation of the Finite-Difference Time Domain (FDTD) Method,�?? Applied Computational Electromagnetics Society, 2001.
  11. J. Vuckovic, M. Loncar, and A. Scherer, �??Surface plasmon enhanced light-emitting diode,�?? IEEE J. Quantum Electron. 36, 1131-1144 (2000). [CrossRef]
  12. A. Taflove, Computational Electromagnetics, (Artech House, Boston, 1995).
  13. W. Henschel, Y. M. Geirgiev, and H. Kurz, �??Study of a high contrast process for hydrogen slisesquioxane as a negative tone electron beam resist,�?? Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 21, 2018-2025 (2003). [CrossRef]
  14. I. W. Rangelow, and H. Loschner, �??Reactive ion etching for microelectrical mechanical system fabrication,�?? Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 13, 2394-2399 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited