OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 23 — Nov. 15, 2004
  • pp: 5661–5674

Resonant leaky-mode spectral-band engineering and device applications

Y. Ding and R. Magnusson  »View Author Affiliations


Optics Express, Vol. 12, Issue 23, pp. 5661-5674 (2004)
http://dx.doi.org/10.1364/OPEX.12.005661


View Full Text Article

Enhanced HTML    Acrobat PDF (838 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Single-layer subwavelength periodic waveguide films with binary profiles are applied to design numerous passive guided-mode resonance elements. It is shown that the grating profile critically influences the spectral characteristics of such devices. In particular, the symmetry of the profile controls the resonance spectral density. Symmetric profiles generate a single resonance on either side of the second stopband whereas two resonances arise, one on each side of the band, for asymmetric structures. Moreover, the profile’s Fourier harmonic content, along with the absolute value of the grating modulation strength, affects the resonance linewidths and their relative locations. Computed Brillouin diagrams are presented to illustrate many key properties of the resonant leaky-mode spectra in relation to modulation strength and profile symmetry at the second stopband. Associated mode plots elucidate the spatial distribution of the leaky-mode field amplitude at resonance and show that, for small modulation, the mode shape may be simple whereas at higher modulation, the shape appears as a complex mixture of modes. By computing device spectra as function of the modulation strength, the buildup of the final spectral properties is illustrated and the contributions of the various leaky modes clarified. The results presented include wavelength and angular spectra for several example devices including narrow linewidth bandpass filters with extended low sidebands for TE and TM polarization, wideband reflectors for TE and TM polarization, polarizer, polarization-independent element, and a wideband antireflector, all with only a single binary layer with one-dimensional periodicity. These results demonstrate new dimensions in optical device design and may provide complementary capability with the field of thin-film optics.

© 2004 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(310.2790) Thin films : Guided waves

ToC Category:
Research Papers

History
Original Manuscript: August 31, 2004
Revised Manuscript: November 4, 2004
Published: November 15, 2004

Citation
Y. Ding and R. Magnusson, "Resonant leaky-mode spectral-band engineering and device applications," Opt. Express 12, 5661-5674 (2004)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-23-5661


Sort:  Journal  |  Reset  

References

  1. R. Magnusson, Y. Ding, K. J. Lee, D. Shin, P. S. Priambodo, P. P. Young, and T. A. Maldonado, �??Photonic devices enabled by waveguide-mode resonance effects in periodically modulated films,�?? in Nano- and Micro-Optics for Information Systems, L. A. Eldada, ed., Proc. SPIE 5225, 20-34 (2003).
  2. L. Mashev and E. Popov, �??Zero order anomaly of dielectric coated gratings,�?? Opt. Commun. 55, 377-380 (1985). [CrossRef]
  3. S. Peng and G. M. Morris, �??Experimental demonstration of resonant anomalies in diffraction from two-dimensional gratings,�?? Opt. Lett. 21, 549-551 (1996). [CrossRef] [PubMed]
  4. D. Rosenblatt, A. Sharon, and A. A. Friesem, �??Resonant grating waveguide structure,�?? IEEE J. Quant. Electronics 33, 2038-2059 (1997) [CrossRef]
  5. Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, "High-efficiency guided-mode resonance filter," Opt. Lett. 23, 1556-1558 (1998) [CrossRef]
  6. P. S. Priambodo, T. A. Maldonado, and R. Magnusson, �??Fabrication and characterization of high-quality waveguide-mode resonant optical filters,�?? Appl. Phys. Lett. 83, 3248-3250, 20 October 2003. [CrossRef]
  7. M. T. Gale, K. Knop, and R. H. Morf, "Zero-order diffractive microstructures for security applications," Proc. SPIE on Optical Security and Anticounterfeiting Systems 1210, 83-89 (1990)
  8. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, �??Normal-incidence guided-mode resonant grating filters : design and experimental demonstration,�?? Opt. Lett. 23, 700-702 (1998) [CrossRef]
  9. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, �??Ultrabroadband mirror using low-index cladded subwavelength grating,�?? IEEE Photonics Tech. Lett. 16, 518-520 (2004). [CrossRef]
  10. C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, �??Broad-band mirror (1.12�?? 1.62 �?�m) using a subwavelength grating,�?? IEEE Photonics Tech. Lett. 16, 1676-1678 (2004). [CrossRef]
  11. W. Suh and S. Fan, "All-pass transmission or flattop reflection filters using a single photonic crystal slab," Appl. Phys. Lett. 84, 4905-4907 (2004). [CrossRef]
  12. Z. S. Liu and R. Magnusson, �??Concept of multiorder multimode resonant optical filters,�?? IEEE Photonics Tech. Lett. 14, 1091-1093 (2002). [CrossRef]
  13. Y. Ding and R. Magnusson, �??Doubly-resonant single-layer bandpass optical filters,�?? Opt. Lett. 29, 1135- 137 (2004). [CrossRef] [PubMed]
  14. S. Tibuleac and R. Magnusson, �??Narrow-linewidth bandpass filters with diffractive thin-film layers,�?? Opt. Lett. 26, 584-586 (2001). [CrossRef]
  15. Y. Ding and R. Magnusson, �??Use of nondegenerate resonant leaky modes to fashion diverse optical spectra,�?? Opt. Express. 12, 1885-1891 (2004). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12- 9-1885">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12- 9-1885</a> [CrossRef] [PubMed]
  16. S. T. Peng, T. Tamir, and H. L. Bertoni, �??Theory of periodic dielectric waveguides,�?? IEEE Trans. Microwave Theory and Tech. MTT-23, 123-133 (1975). [CrossRef]
  17. T. K. Gaylord and M. G. Moharam, �??Analysis and applications of optical diffraction by gratings,�?? Proc. IEEE 73, 894-937 (1985). [CrossRef]
  18. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, �??Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: Enhanced transmittance matrix approach,�?? J. Opt. Soc. . A 12, 1077-1086 (1995). [CrossRef]
  19. P. Vincent and M. Neviere, �??Corrugated dielectric waveguides: A numerical study of the second-order stop bands,�?? Appl. Phys. 20, 345-351 (1979). [CrossRef]
  20. R. F. Kazarinov and C. H. Henry, �??Second-order distributed feedback lasers with mode selection provided by first-order radiation loss,�?? IEEE J. Quant. Elect. QE-21, 144-150 (1985) [CrossRef]
  21. D. L. Brundrett, E. N. Glytsis, T. K. Gaylord, and J. M. Bendickson, �??Effects of modulation strength in guided-mode resonant subwavelength gratings at normal incidence,�?? J. Opt. Soc. Am. A. 17, 1221-1230 (2000). [CrossRef]
  22. L. Brillouin, Wave propagation in Periodic Structures, McGraw-Hill, New York (1946), p. 75.
  23. A. Hessel, �??General characteristics of traveling-wave antennas,�?? in Antenna Theory, Part 2, vol. 7, Inter- University Electronics Series, R. E. Collins and F. J. Zucker, eds., McGraw-Hill, New York (1969), Chapter 19, pp. 151-257
  24. J. D. Joannopoulos, R. D. Meade and, J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton, 1995.
  25. H. A. Macleod, Thin-Film Optical Filters, McGraw-Hill, New York (1989).
  26. M. T. Gale, �??Replication,�?? in Micro-optics: Elements, systems, and applications, H. P. Herzig, ed., Taylor&Francis, London (1997), Chapter 6, pp. 153-177
  27. D. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, �??Thin-film optical filters with diffractive elements and waveguides,�?? Opt. Eng. 37, 2634-2646 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited