OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 23 — Nov. 15, 2004
  • pp: 5735–5740

Nonlinear optical lithography with ultra-high sub-Rayleigh resolution

Sean J. Bentley and Robert W. Boyd  »View Author Affiliations

Optics Express, Vol. 12, Issue 23, pp. 5735-5740 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (200 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A nonlinear optical, interferometric method for improving the resolution of a lithographic system by an arbitrarily large factor with high visibility is described. The technique is implemented experimentally for both two-fold and three-fold enhancement of the resolution with respect to the traditional Rayleigh limit. In these experiments, an N-photon-absorption recording medium is simulated by Nth harmonic generation followed by a CCD camera. This technique does not exploit quantum features of light; this fact suggests that the improved resolution achieved through use of “quantum lithography” results primarily from the nonlinear response of the recording medium and not from quantum features of the light field.

© 2004 Optical Society of America

OCIS Codes
(110.5220) Imaging systems : Photolithography
(190.4180) Nonlinear optics : Multiphoton processes

ToC Category:
Research Papers

Original Manuscript: September 8, 2004
Revised Manuscript: November 7, 2004
Published: November 15, 2004

Sean Bentley and Robert Boyd, "Nonlinear optical lithography with ultra-high sub-Rayleigh resolution," Opt. Express 12, 5735-5740 (2004)

Sort:  Journal  |  Reset  


  1. Lord Rayleigh, �??Investigations in optics with special reference to the spectroscope,�?? Phil. Mag. 8, 261-274 (1879) [CrossRef]
  2. S. R. J. Brueck, S. H. Zaidi, X. Chen, and Z. Zhang, �??Interferometric lithography �??�?? from periodic arrays to arbitrary patterns,�?? Microelectron. Eng. 42, 145-148 (1998). [CrossRef]
  3. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, �??N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, �??Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit" Phys. Rev. Lett. 85, 2733-2736 (2000 [CrossRef] [PubMed]
  4. G. S. Agarwal, R. W. Boyd, E. M. Nagasako, and S. J. Bentley, �??Comment on Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit,�?? Phys. Rev. Lett. 86, 1389 (2001) [CrossRef] [PubMed]
  5. G. Bjork, L.L. Sanchez-Soto, and J. Soderholm, �??Entangled-state lithography: Tailoring any pattern with a single state,�?? Phys. Rev. Lett. 86, 4516-4519 (2001) [CrossRef] [PubMed]
  6. C.C. Gerry, �??Enhanced generation of twin single-photon states via quantum interference in parametric down conversion: Application to two-photon quantum photolithography,�?? Phys. Rev. A 67, 043801 (2003) [CrossRef]
  7. M. D�??Angelo, M. V. Chekhova, and Y. Shih, �??Two-photon diffraction and quantum lithography,�?? Phys. Rev. Lett. 87, 013602 (2001) [CrossRef]
  8. E. J. S. Fonseca, C. H. Monken, and S. Pádua, �??Measurement of the de Broglie wavelength of a multiphoton wave packet,�?? Phys. Rev. Lett. 82, 2868-2871 (1999) [CrossRef]
  9. K. Edamatsu, R. Shimizu, and T. Itoh, �??Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion,�?? Phys. Rev. Lett. 89, 213601 (2002) [CrossRef] [PubMed]
  10. E. M. Nagasako, S. J. Bentley and R. W. Boyd, and G. S. Agarwal, �??Non classical two-photon interferometry and lithography with high-gain optical parametric amplifiers,�?? Phys. Rev. A 64, 043802 (2001) [CrossRef]
  11. E. M. Nagasako, S. J. Bentley and R. W. Boyd, and G. S. Agarwal, �??Parametric down conversion vs. optical parametric amplification: A comparison of their quantum statistics,�?? J. Mod. Opt. 49, 529-537 (2002) [CrossRef]
  12. H. Ooki, M. Komatsu, and M. Shibuya, �??A novel super-resolution technique for optical lithography�??nonlinear multiple exposure method,�?? Jpn. J. Appl. Phys. 33, L177-L179 (1994) [CrossRef]
  13. E. Yablonovitch and R. B. Vrijen, �??Optical projection lithography at half the Rayleigh resolution limit by two photon exposure,�?? Opt. Eng. 38, 334-338 (1999) [CrossRef]
  14. D. Korobkin and E. Yablonovitch, �??Two-fold spatial resolution enhancement by two-photon exposure of photographic film,�?? Opt. Eng. 41, 1729-1732 (2002) [CrossRef]
  15. F. S. Cataliotti, R. Scheunemann, T. W. Hänsch, and M. Weitz, �??Superresolution of pulsed multiphoton Raman transitions,�?? Phys. Rev. Lett. 87, 113601 (2001) [CrossRef] [PubMed]
  16. P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, �??Quantum interferometric optical lithography: Towards arbitrary two-dimensional patterns,�?? Phys. Rev. A 63, 063407 (2001) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited