OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 24 — Nov. 29, 2004
  • pp: 5850–5856

Larger bandgaps of two-dimensional triangular photonic crystals fabricated by holographic lithography can be realized by recording geometry design

X. L. Yang, L. Z. Cai, and Y. R. Wang  »View Author Affiliations

Optics Express, Vol. 12, Issue 24, pp. 5850-5856 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (899 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The photonic band gap (PBG) properties of two classes of two-dimensional (2-D) triangular lattice fabricated by holographic lithography are investigated numerically. The effect of intensity threshold on the filling ratio and then the shape of “atoms”, and the corresponding photonic gap are comprehensively studied. Our results show that the recording geometry for a given 2-D triangular lattice is not unique, and this fact gives us more freedom in choosing proper recording geometry to obtain larger bandgaps.

© 2004 Optical Society of America

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(260.2110) Physical optics : Electromagnetic optics
(260.3160) Physical optics : Interference
(350.3950) Other areas of optics : Micro-optics

ToC Category:
Research Papers

Original Manuscript: September 27, 2004
Revised Manuscript: November 11, 2004
Published: November 29, 2004

X. L. Yang, L. Z. Cai, and Y. R. Wang, "Larger bandgaps of two-dimensional triangular photonic crystals fabricated by holographic lithography can be realized by recording geometry design," Opt. Express 12, 5850-5856 (2004)

Sort:  Journal  |  Reset  


  1. E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals (Princeton University Press, Princeton, 1995).
  3. C. M. Anderson and K. P. Giapis, �??Larger two-dimensional photonic band gaps,�?? Phys. Rev. Lett. 77, 2949-2952 (1996). [CrossRef] [PubMed]
  4. D. L. Bullock, C. Shih, R. S. Margulies, �??Photonic band structure investigation of two-dimensional Bragg reflector mirrors for semiconductor laser mode control,�?? J. Opt. Soc. Am. B 10, 399-403 (1993). [CrossRef]
  5. J. C. Knight, T. A. Birks, P. St. J. Russell, D. M. Atkin, �??All-silica single-mode fiber with photonic crystal cladding,�?? Opt. Lett. 21, 1547-1549 (1996). [CrossRef] [PubMed]
  6. A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten, N. P. Nicorvici, �??Photonic engineering: Aphrodite's iridescence,�?? Nature 409, 36-37 (2001). [CrossRef] [PubMed]
  7. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turberfield, �??Fabrication of photonic crystals for the visible spectrum by holographic lithography, �?? Nature 404, 53-56 (2000). [CrossRef] [PubMed]
  8. X. L. Yang, L. Z. Cai, Y. R. Wang, Q. Liu, �??Interference of four umbrellalike beams by a diffractive beam splitter for fabrication of two-dimensional square and trigonal lattices,�?? Opt. Lett. 28, 453-455 (2003). [CrossRef] [PubMed]
  9. L. Z. Cai, X. L. Yang, Y. R. Wang, �??Formation of a microfiber bundle by interference of three noncoplanar beams,�?? Opt. Lett. 26, 1858-1860 (2001). [CrossRef]
  10. A. Shishido, Ivan B. Diviliansky, I. C. Khoo, T. S. Mayer, �??Direct Fabrication of Two-Dimensional Titania Arrays Using Interference Photolithography,�?? Appl. Phys. Lett. 79, 3332-3334 (2001). [CrossRef]
  11. S. G. Johnson and J. D. Joannopoulos, �??Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis,�?? Opt. Express 8, 173-190 (2001), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a> [CrossRef] [PubMed]
  12. Richard Brent, Algorithms for minimization without derivatives (Prentice-Hall, 1973; republished by Dover in paperback, 2002).
  13. A. J. Ward and J. B. Pendry, �??Calculating photonic Green's functions using a nonorthogonal finite-difference time-domain method,�?? Phys. Rev. B 58, 7252-7259 (1998). [CrossRef]
  14. J. P. Berenger, �??A perfectly matched layer for the absorption of electromagnetic waves,�?? J. Comput. Phys. 114, 185-200 (1994). [CrossRef]
  15. V. Berger, O. Gauthier-Lafaye, E. Costard, �??Photonic band gaps and holography,�?? J. Appl. Phys. 82, 60-64 (1997). [CrossRef]
  16. D. Cassagne, C. Jouanin, D. Bertho, �??Hexagonal photonic-band-gap structures,�?? Phys. Rev. B 53, 7134-7142 (1996). [CrossRef]
  17. P. R. Villeneuve, M. Piche, �??Photonic band gaps in two-dimensional square and hexagonal lattices,�?? Phys. Rev. B 46, 4969-4972 (1992). [CrossRef]
  18. X. L. Yang, L. Z. Cai, and Q. Liu, "Theoretical bandgap modeling of two-dimensional triangular photonic crystals formed by interference technique of three-noncoplanar beams," Opt. Express 11, 1050-1055 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-1050">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-1050</a> [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited