OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 24 — Nov. 29, 2004
  • pp: 5910–5915

Aperiodic photonic quantum-well structures for multiple channeled filtering at arbitrary preassigned frequencies

Yan Zhang and Ben-Yuan Gu  »View Author Affiliations

Optics Express, Vol. 12, Issue 24, pp. 5910-5915 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (106 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Designs of aperiodic photonic quantum-well (APQW) structures to achieve multiple channeled filtering at arbitrary preassigned frequencies are done by using the simulated annealing algorithm with a special merit function. The APQW structure consists of aperiodically stacked dielectric-layers sandwiched by two finite-length prototype photonic crystals (PCs). The insert of the APQWs can generate the specified defect states with predetermined frequencies. Numerical simulations show that the designed APQWs can achieve the desired specification.

© 2004 Optical Society of America

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(230.5590) Optical devices : Quantum-well, -wire and -dot devices

ToC Category:
Research Papers

Original Manuscript: September 29, 2004
Revised Manuscript: November 4, 2004
Published: November 29, 2004

Yan Zhang and Ben-Yuan Gu, "Aperiodic photonic quantum-well structures for multiple channeled filtering at arbitrary preassigned frequencies," Opt. Express 12, 5910-5915 (2004)

Sort:  Journal  |  Reset  


  1. E. Yablonovitch,�??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486- 2489 (1987). [CrossRef] [PubMed]
  3. C. M. Bowden, J. P. Dowling, and H. O. Everitt, �??Development and applications of materials exhibiting photonic band gaps: Introduction,�?? J. Opt. Soc. Am. B 10, 280 (1993).
  4. A. Z. Genack and N. Garcia, �??Electromagnetic localization and photonics,�?? J. Opt. Soc. Am. B 10, 408-413 (1993). [CrossRef]
  5. S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos,�??Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,�?? Science 282, 274-276 (1998). [CrossRef] [PubMed]
  6. D. R. Smith, R. Dalichaouch, N. Kroll, S. Schultz, S. L. Mcall, P. M. Platzman,�??Photonic band structure and defects in one and two dimensions,�?? J. Opt. Soc. Am. B 10, 314-321 (1993). [CrossRef]
  7. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. Michel, J. D. Joannopoulos, and E. L. Thomas, �??A dielectric omnidirectional reflector,�?? Science 282, 1679-1682 (1998). [CrossRef] [PubMed]
  8. F. Qiao, C. Zhang, J. Wan, and J. Zi, �??Photonic quantum-well structures: Multiple channeled filtering phenomena,�?? Appl. Phys. Lett. 77, 3698-3700 (2000). [CrossRef]
  9. H. C. Huang, M. H. Hsu, K. L. Chen, and J. F. Huang, �??Simulated annealing algorithm applied in optimum design of optical thin-film filters,�?? Micro. Opt. Tech. Lett. 38, 423-428 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited