OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 24 — Nov. 29, 2004
  • pp: 5916–5921

Broadband photonic crystal waveguide 60° bend obtained utilizing topology optimization

L.H. Frandsen, A. Harpøth, P.I. Borel, M. Kristensen, J.S. Jensen, and O. Sigmund  »View Author Affiliations


Optics Express, Vol. 12, Issue 24, pp. 5916-5921 (2004)
http://dx.doi.org/10.1364/OPEX.12.005916


View Full Text Article

Enhanced HTML    Acrobat PDF (1143 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Topology optimization has been used to design a 60° bend in a single-mode planar photonic crystal waveguide. The design has been realized in a silicon-on-insulator material and we demonstrate a record-breaking 200nm transmission bandwidth with an average bend loss of 0.43±0.27 dB for the TE polarization. The experimental results agree well with 3D finite-difference-time-domain simulations.

© 2004 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.4430) General : Numerical approximation and analysis
(130.2790) Integrated optics : Guided waves
(130.3130) Integrated optics : Integrated optics materials
(220.4830) Optical design and fabrication : Systems design
(230.5440) Optical devices : Polarization-selective devices
(230.7390) Optical devices : Waveguides, planar

ToC Category:
Research Papers

History
Original Manuscript: October 19, 2004
Revised Manuscript: November 12, 2004
Published: November 29, 2004

Citation
L. Frandsen, A. Harpøth, P. Borel, M. Kristensen, J. Jensen, and O. Sigmund, "Broadband photonic crystal waveguide 60° bend obtained utilizing topology optimization," Opt. Express 12, 5916-5921 (2004)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-24-5916


Sort:  Journal  |  Reset  

References

  1. E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. T. F. Krauss, R. M. De La Rue, and S. Brand, �??Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,�?? Nature 383, 699-702 (1996). [CrossRef]
  4. M. Thorhauge, L. H. Frandsen and P. I. Borel, �??Efficient Photonic Crystal Directional Couplers,�?? Opt. Lett. 28, 1525-1527 (2003). [CrossRef] [PubMed]
  5. Y. Sugimoto, Y. Tanaka, N. Ikeda, K. Kanamoto, Y. Nakamura, S. Ohkouchi, H. Nakamura, K. Inoue, H. Sasaki, Y. Watanabe, K. Ishida, H. Ishikawa, K. Asakawa, �??Two Dimensional Semiconductor-Based Photonic Crystal Slab Waveguides for Ultra-Fast Optical Signal Processing Devices,�?? IEICE Trans. Electron. E87-C, 316-327 (2004).
  6. L. H. Frandsen, P. I. Borel, Y. X. Zhuang, A. Harpøth, M. Thorhauge, M. Kristensen, W. Bogaerts, P. Dumon, R. Baets, V. Wiaux, J. Wouters, and S. Beckx, �??Ultra-low-loss 3-dB Photonic Crystal Waveguide Splitter,�?? Opt. Lett. 29, 1623-1625 (2004). [CrossRef] [PubMed]
  7. T. Søndergaard, J. Arentoft, and M. Kristensen, �??Theoretical Analysis of Finite-Height Semiconductor-on-Insulator-Based Planar Photonic Crystal Waveguides,�?? J. Lightwave Technol. 20, 1619-1626 (2002) [CrossRef]
  8. C. Jamois, R. B. Wehrspohn, L.C. Andreani, C. Hermann, O. Hess, U. Gösele, �??Silicon-based two-dimensional photonic crystal waveguides,�?? Photonics and Nanostructures �?? Fundamentals and Applications 1, 1-13 (2003). [CrossRef]
  9. P.I. Borel, L.H. Frandsen, A. Harpøth, J.B. Leon, H. Liu, M. Kristensen, W. Bogaerts, P. Dumon, R. Baets, W. Wiaux, J. Wouters, S. Beckx, �??Bandwidth tuning of photonic crystal waveguide bends,�?? Electron. Lett. 40, 1263-1264 (2004). [CrossRef]
  10. A. Chutinan, M. Okano, S. Noda, �??Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,�?? Appl. Phys.Lett. 80, 1698-1700 (2002). [CrossRef]
  11. J. Smajic, C. Hafner, D. Erni, �??Design and optimization of an achromatic photonic crystal bend,�?? Opt. Express 11, 1378-1384 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-12-1378.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-12-1378.</a> [CrossRef] [PubMed]
  12. P.I. Borel, A. Harpøth, L.H. Frandsen, M. Kristensen, P. Shi, J.S. Jensen and O. Sigmund, �??Topology Optimization and fabrication of photonic crystal structures,�?? Opt. Express 12, 1996�??2001 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1996.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1996.</a> [CrossRef] [PubMed]
  13. A. Lavrinenko, P.I. Borel, L.H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen and T. Niemi, �??Comprehensive FDTD Modelling of Photonic Crystal Waveguide Components,�?? Opt. Express 12, 234-248 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-234.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-234.</a> [CrossRef] [PubMed]
  14. P.I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, Y. X. Zhuang, M. Kristensen, and H. M. H. Chong, �??Efficient propagation of TM polarized light in photonic crystal components exhibiting band gaps for TE polarized light.�?? Opt. Express 11, 1757-1762 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1757.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1757.</a> [CrossRef] [PubMed]
  15. A. Talneau, L. Le Gouezigou, N. Bouadma, M. Kafesaki, C.M. Soukoulis, M. Agio, �??Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 μm,�?? Appl. Phys.Lett. 80, 547-549 (2002). [CrossRef]
  16. E. Chow, S. Y. Lin, J. R. Wendt, S. G. Johnson, J. D. Joannopoulos, �??Quantitative analysis of bending efficiency in photonic-crystal waveguide bends at λ = 1.55 μm wavelengths,�?? Opt. Lett. 26, 286-288 (2001). [CrossRef]
  17. M. P. Bendsøe and O. Sigmund, Topology optimization �?? Theory, Methods and Applications (Springer-Verlag, 2003).
  18. K. Svanberg, �??The method of moving asymptotes: a new method for structural optimization,�?? Int. J. Numer. Meth. Engng. 24, 359-373 (1987). [CrossRef]
  19. J. S. Jensen and O. Sigmund, �??Systematic design of photonic crystal structures using topology optimization: Low-loss waveguide bends,�?? Appl. Phys. Lett. 84, 2022-2024 (2004). [CrossRef]
  20. O. Sigmund and J. S. Jensen, �??Systematic design of phononic band gap materials and structures by topology optimization,�?? Phil. Trans. R. Soc. Lond. A 361, 1001-1019 (2003). [CrossRef]
  21. J. S. Jensen and O. Sigmund, �??Topology optimization of photonic crystal structures: A high bandwidth low loss T-junction waveguide,�?? J. Opt. Soc. Am. B, accepted (2004).
  22. R. L. Espinola, R. U. Ahmad, F. Pizzuto, M. J. Steel, R. M. Osgood, Jr., �??A study of high-index contrast 90° waveguide bend structures,�?? Opt. Express 8, 517-528 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-9-517.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-9-517.</a> [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited