OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 24 — Nov. 29, 2004
  • pp: 5987–5995

Numerical modeling of the subwavelength phase-change recording using an apertureless scanning near-field optical microscope

Thomas Grosges, Stéphane Petit, Dominique Barchiesi, and Sylvain Hudlet  »View Author Affiliations


Optics Express, Vol. 12, Issue 24, pp. 5987-5995 (2004)
http://dx.doi.org/10.1364/OPEX.12.005987


View Full Text Article

Enhanced HTML    Acrobat PDF (1035 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The electromagnetic field enhancement (FE) at the end of the probe of an Apertureless Scanning Near-field Optical Microscope (ASNOM) is used to write nanometric dots in a phase-change medium. The FE acts as a heat source that allows the transition from amorphous to crystalline phase in a Ge2Sb2Te5 layer. Through the 2D Finite Element Method (FEM) we predict the size of the dot as a function of both the illumination duration and the incoming power density. Numerical results are found to be in good agreement with preliminary experimental data.

© 2004 Optical Society of America

OCIS Codes
(180.5810) Microscopy : Scanning microscopy
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Research Papers

History
Original Manuscript: October 14, 2004
Revised Manuscript: November 17, 2004
Published: November 29, 2004

Citation
Thomas Grosges, Stéphane Petit, Dominique Barchiesi, and Sylvain Hudlet, "Numerical modeling of the subwavelength phase-change recording using an apertureless scanning near-field optical microscope," Opt. Express 12, 5987-5995 (2004)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-24-5987


Sort:  Journal  |  Reset  

References

  1. H.J. Mamin, R.P. Ried, B.D. Terris and D. Rugar, �??High-density data storage based on the atomic force microscope,�?? in Proceedings of IEEE 87, 1014-1027 (1999). [CrossRef]
  2. B.D. Terris, L. Folks, D. Weller, J.E.E. Baglin, A.J. Kellock, H. Rothuizen and P. Vettiger, �??Ion-beam patterning of magnetic films using stencil masks,�?? Appl. Phys. Lett. 75, 403-405 (1999). [CrossRef]
  3. E. Betzig, J.K. Trautman, R.Wolfe, E.M. Gyorgy, P.L. Finn, M.H. Kryder and C.H. Chang, �??Near-field magnetooptics and high density data storage,�?? Appl. Phys. Lett. 61, 142-144 (1992). [CrossRef]
  4. S. Hosaka, T. Shintani, M. Miyamoto, A. Hirotsune, M. Terao, M. Yoshida, K. Fujita and S. K¨ammer, �??Nanometer-Sized Phase-Change Recording Using a Scanning Near-Field Optical Microscope with a Laser Diode,�?? Jpn. J. Appl. Phys. 35, 443-447 (1996). [CrossRef]
  5. L. Novotny, R.X. Bian and X.S. Xie, �??Theory of nanometric optical tweezers,�?? Phys. Rev. Lett. 79, 645-648 (1997). [CrossRef]
  6. O.J.F. Martin and C. Girard, �??Controlling and tuning strong optical field gradients at a local probe microscope tip apex,�?? Appl. Phys. Lett. 70, 705-707 (1997). [CrossRef]
  7. Y.C. Martin, H.F. Hamann and H.L. Wickramasinghe, �??Strength of the electric field in apertureless near-field optical microscopy,�?? J. Appl. Phys. 89, 5774-5778 (2001). [CrossRef]
  8. P. Royer, D. Barchiesi, G. Lerondel, R. Bachelot, �??Near-Field Optical Patterning and Structuring Based on Local- Field Enhancement at the Extremity of a Metal Tip,�?? Phil. Trans. R. Soc. Lond. A 362, 821-842 (2004). [CrossRef]
  9. F. H�??Dhili, R. Bachelot, G. Lerondel, D. Barchiesi and P. Royer, �??Near-field optics: Direct observation of the field enhancement below an apertureless probe using a photosensitive polymer,�?? Appl. Phys. Lett. 79, 4019-4021 (2001). [CrossRef]
  10. R. Bachelot, F. H�??Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Larnpel, J.P. Boilot and K. Lahlil, �??Apertureless near-field optical microscopy: A study of the local tip field enhancement using photosensitive azobenzene-containing films,�?? J. Appl. Phys. 94, 2060-2072 (2003). [CrossRef]
  11. F. Zenhausern, M.P. O�??Boyle and H.K. Wickramasinghe, �??Apertureless near-field optical microscope,�?? Appl. Phys. Lett. 65, 1623-1625 (1994). [CrossRef]
  12. R. Bachelot, P. Gleyzes and A.C. Boccara, �??Near-field optical microscope based on local perturbation of a diffraction spot,�?? Opt. Lett. 20, 1924-1926 (1995). [CrossRef] [PubMed]
  13. L.D. Landau, E.M. Lifschiz, Elektrodynamik der Kontinua (Akademic-Verlag, Berlin, 1974).
  14. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira and M. Takao, �??Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,�?? J. Appl. Phys. 65, 2849-2856 (1991). [CrossRef]
  15. M. Born, E. Wolf, Principle of Optics (Pergamon Press, Oxford, 1993).
  16. J. Jin, The Finite Element Method in Electromagnetics (John Wiley and Sons, New York, 1993).
  17. R. Fikri, T. Grosges and D. Barchiesi, �??Apertureless scanning near-field optical microscopy: numerical modeling of the lock-in detection,�?? Opt. Commun. 232, 15-23 (2004). [CrossRef]
  18. R. Fikri, T. Grosges and D. Barchiesi, �??Apertureless scanning near-field optical microscopy: the need for probe vibration-modeling,�?? Opt. Lett. 28, 2147-2149 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (847 KB)     
» Media 2: AVI (656 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited