OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 25 — Dec. 13, 2004
  • pp: 6165–6177

Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers

Chin-Ping Yu and Hung-Chun Chang  »View Author Affiliations

Optics Express, Vol. 12, Issue 25, pp. 6165-6177 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (493 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Eigenvalue equations for solving full-vector modes of optical waveguides are formulated using Yee-mesh-based finite difference algorithms and incorporated with perfectly matched layer absorbing boundary conditions. The established method is thus able to calculate the complex propagation constants and the confinement losses of leaky waveguide modes. Proper matching of dielectric interface conditions through the Taylor series expansion of the fields is adopted in the formulation to achieve high numerical accuracy. The method is applied to the study of the holey fiber with triangular lattice, the two-core holey fiber, and the air-guiding photonic crystal fiber.

© 2004 Optical Society of America

OCIS Codes
(060.2400) Fiber optics and optical communications : Fiber properties
(230.3990) Optical devices : Micro-optical devices
(230.7370) Optical devices : Waveguides
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Research Papers

Original Manuscript: November 3, 2004
Revised Manuscript: November 28, 2004
Published: December 13, 2004

Chin-Ping Yu and Hung-Chun Chang, "Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers," Opt. Express 12, 6165-6177 (2004)

Sort:  Journal  |  Reset  


  1. C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, ???Full-vectorial mode calculations by finite difference method,??? Inst. Elec. Eng. Proc.-J 141, 281???286 (1994). [CrossRef]
  2. P. Lüsse, P. Stuwe, J. Schüle, and H.-G. Unger, ???Analysis of vectorial mode fields in optical waveguides by a new finite difference method,??? J. Lightwave Technol. 12, 487???494 (1994). [CrossRef]
  3. K. S. Yee, ???Numerical solution of initial boundary value problems involving Maxwell???s equations in isotropic media,??? IEEE Trans. Antennas Propagat. AP-14, 302???307 (1966).
  4. T. Ando, H. Nakayama, S. Numata, J. Yamauchi, and H. Nakano, ???Eigenmode analysis of optical waveguides by a Yee-mesh-based imaginary-distance propagation method for an arbitrary dielectric interface,??? J. Lightwave Technol. 20, 1627???1634 (2002). [CrossRef]
  5. Z. Zhu and T. G. Brown, ???Full-vectorial finite-difference analysis of microstructured optical fibers,??? Opt. Express 10, 853???864 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-17-853">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-17-853</a>. [CrossRef] [PubMed]
  6. H. C. Chang and C. P. Yu, ???Yee-mesh-based finite difference eigenmode analysis algorithms for optical waveguides and photonic crystals,??? in OSA Integr. Photon. Res. Dig., 2004, paper IFE4.
  7. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, ???All-silica single-mode optical fiber with photonic crystal cladding,??? Opt. Lett. 21, 1547???1549 (1996). [CrossRef] [PubMed]
  8. T. P. White, B. T. Kuhlmey, R. C. Mcphedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322???2330 (2002). [CrossRef]
  9. J. P. Berenger, ???A perfectly matched layer for the absorption of electromagnetic waves,??? J. Computat. Phys. 114, 185???200 (1994). [CrossRef]
  10. H. C. Chang and C. P. Yu, ???Yee-mesh-based finite difference optical waveguide eigenmode solver with perfectly matched layer absorbing boundaries conditions,??? in Proceedings of 5th Asia-Pacific Engineering Research Forum on Microwaves and Electromagnetic Theory, pp. 158???164, Kyushu University, Fukuoka, Japan, July 29???30, 2004. [PubMed]
  11. S. Guo, F. Wu, and S. Albin, ???Loss and dispersion analysis of microstructured fibers by finite-difference method,??? Opt. Express 12, 3341???3352 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-15-3341">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-15-3341</a>. [CrossRef] [PubMed]
  12. W. C. Chew and W. H. Weedon, ???A 3D perfectly matched medium from modified Maxwell???s equations with stretched coordinates,??? Microwave Opt. Technol. Lett. 7, 599???604 (1994). [CrossRef]
  13. R. Mittra and U. Pekel, ???A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves,??? IEEE Microwave Guided Wave Lett. 5, 84???86 (1995). [CrossRef]
  14. C. M. Rappaport, ???Perfectly matched absorbing boundary conditions based on anisotropic lossy mapping of space,??? IEEE Microwave Guided Wave Lett. 5, 90???92 (1995). [CrossRef]
  15. Y. P. Chiou, Y. C. Chiang, and H. C. Chang, ???Improved three-point formulas considering the interface conditions in the finite-difference analysis of step-index optical devices,??? J. Lightwave Technol. 18, 243???251 (2000). [CrossRef]
  16. Y. C. Chiang, Y. P. Chiou, and H. C. Chang, ???Improved full-vectorial finite-difference mode solver for optical waveguides with step-index profiles,??? J. Lightwave Technol. 20, 1609???1618 (2002). [CrossRef]
  17. G. R. Hadley, ???High-accuracy finite-difference equations for dielectric waveguide analysis I: Uniform regions and dielectric interfaces,??? J. Lightwave Technol. 20, 1210???1218 (2002). [CrossRef]
  18. G. R. Hadley, ???High-accuracy finite-difference equations for dielectric waveguide analysis II: Dielectric corners,??? J. Lightwave Technol. 20, 1219???1231 (2002). [CrossRef]
  19. Ditkowski, J. S. Hesthaven, and C. H. Teng, ???Modeling dielectric interfaces in the FDTD-method: A comparative study,??? in 2000 Progress in Electromagnetics Research (PIERS 2000) Proceedings, Cambridge, Massachusetts, July 5???14, 2000.
  20. K. Saitoh and M. Koshiba, ???Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers,??? IEEE J. Quantum Electron. 38, 927???933 (2002). [CrossRef]
  21. M. Koshiba and K. Saitoh, ???Numerical verification of degeneracy in hexagonal photonic crystal fibers,??? IEEE Photon. Technol. Lett. 13, 1313???1315 (2001). [CrossRef]
  22. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, ???Singlemode photonic band gap guidance of light in air,??? Science 285, 1537???1539 (1999). [CrossRef] [PubMed]
  23. K. Saitoh, N. A. Mortensen, and M. Koshiba, ???Air-core photonic band-gap fibers: the impact of surface modes,??? Opt. Express 12, 394???400 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-394">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-394<a/>. [CrossRef] [PubMed]
  24. H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, ???Designing air-core photonic-bandgap fibers free of surface modes,??? IEEE J. Quantum Electron. 40, 551???556 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited