OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 26 — Dec. 27, 2004
  • pp: 6508–6514

An optimized Er gain band all-fiber chirped pulse amplification system

G. Imeshev, I. Hartl, and M. E. Fermann  »View Author Affiliations


Optics Express, Vol. 12, Issue 26, pp. 6508-6514 (2004)
http://dx.doi.org/10.1364/OPEX.12.006508


View Full Text Article

Enhanced HTML    Acrobat PDF (99 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate an all-fiber Er chirped pulse amplification (CPA) system based on compression in photonic band gap fiber (PBGF) that produces 570 fs pulses with 310 nJ pulse energy. The dispersion of the PBGF is measured precisely and used to design a dispersion-matched nonlinearly-chirped fiber Bragg grating stretcher. We analyze the trade-offs of such all-fiber CPA system design and compare different PBGFs in terms of the derived figure of merit. Such system architecture should be scalable to few micro-Joule level pulse energies close to the compressor nonlinearity limit when PBGFs with improved figure of merit become available.

© 2004 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(230.1480) Optical devices : Bragg reflectors
(320.5520) Ultrafast optics : Pulse compression
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Research Papers

History
Original Manuscript: October 27, 2004
Revised Manuscript: December 10, 2004
Published: December 27, 2004

Citation
G. Imeshev, I. Hartl, and M. Fermann, "An optimized Er gain band all-fiber chirped pulse amplification system," Opt. Express 12, 6508-6514 (2004)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-26-6508


Sort:  Journal  |  Reset  

References

  1. IMRA America, Inc. product listing, <a href= "http://www.imra.com">http://www.imra.com</a>.
  2. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999). [CrossRef] [PubMed]
  3. D. Ouzounov, F. Ahmad, D. Müller, N. Venkataraman, M. Gallagher, K. Koch, and A. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702 (2003). [CrossRef] [PubMed]
  4. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003). [CrossRef] [PubMed]
  5. J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003). [CrossRef] [PubMed]
  6. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, and A. Tünnermann, "All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber," Opt. Express 11, 3332 - 3337 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-24-3332">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-24-3332</a>. [CrossRef] [PubMed]
  7. C. J. S. de Matos, J. R. Taylor, T. P. Hansen, K. P. Hansen, and J. Broeng, "All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber," Opt. Express 11, 2832-2837 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2832">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2832</a>. [CrossRef] [PubMed]
  8. C. J. S. de Matos and J. R. Taylor, "Multi-kilowatt, all-fiber integrated chirped-pulse amplification system yielding 40�? pulse compression using air-core fiber and conventional erbium-doped fiber amplifier," Opt. Express 12, 405-409 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-405">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-405<a/>. [CrossRef] [PubMed]
  9. D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Communications 56, 219-221 (1985). [CrossRef]
  10. S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, "High power ultrafast lasers," Rev. Sci. Inst. 69, 1207-1223 (1998). [CrossRef]
  11. A. Galvanauskas, "Mode-scalable fiber-based chirped pulse amplification systems," IEEE J. Sel. Topics in Quantum Electron. 7, 504-517 (2001). [CrossRef]
  12. G. Imeshev, I. Hartl, and M. E. Fermann, "Chirped pulse amplification using a nonlinearly-chirped fiber Bragg grating matched to the Treacy compressor," Opt. Lett. 29, 679-681 (2004). [CrossRef] [PubMed]
  13. B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Low loss (1.7 dB/km) hollow core photonic bandgap fiber", in Optical Fiber Communication, Vol. 95 of OSA Trends in Optics and Photonics, Technical Digest, Postconference Edition (Optical Society of America, Washington, D.C., 2004), paper PDP24.
  14. BlazePhotonics Ltd. product listing, <a href= "http://www.blazephotonics.com">http://www.blazephotonics.com</a>.
  15. K. Naganuma, K. Mogi, and H. Yamada, "Group-delay measurement using the Fourier transform of an interferometric cross correlation generated by white light," Opt. Lett. 15, 393-395 (1990). [CrossRef] [PubMed]
  16. S. Diddams and J.-C. Diels, "Dispersion measurements with white-light interferometry," J. Opt. Soc. Am. B 13, 1120-1129 (1996). [CrossRef]
  17. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited