OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 26 — Dec. 27, 2004
  • pp: 6624–6631

Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode

Guk-Hyun Kim, Yong-Hee Lee, Akihiko Shinya, and Masaya Notomi  »View Author Affiliations


Optics Express, Vol. 12, Issue 26, pp. 6624-6631 (2004)
http://dx.doi.org/10.1364/OPEX.12.006624


View Full Text Article

Enhanced HTML    Acrobat PDF (576 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Coupling characteristics between the single-cell hexapole mode and the triangular-lattice photonic crystal slab waveguide mode is studied by the finite-difference time-domain method. The single-cell hexapole mode has a high quality factor (Q) of 3.3×106 and a small modal volume of 1.18(λ/n)3. Based on the symmetry, three representative types of coupling geometries (shoulder-couple, butt-couple and side-couple structures) are selected and tested. The coupling efficiency shows strong dependence on the transverse overlap of the cavity mode and the waveguide mode over the region of the waveguide. The shoulder-couple structure shows best coupling characteristics among three tested structures. For example, two shoulder-couple waveguides and a hexapole cavity result in a high performance resonant-tunneling-filter with Q of 9.7×105 and transmittance of 0.48. In the side-couple structure, the coupling strength is much weaker than that of the shoulder-couple structure because of the poor spatial overlap between the mode profiles. In the direct-couple structure, the energy transfer from the cavity to the waveguide is prohibited because of the symmetry mismatch and no coupling is observed.

© 2004 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(230.7370) Optical devices : Waveguides
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Research Papers

History
Original Manuscript: November 17, 2004
Revised Manuscript: December 13, 2004
Published: December 27, 2004

Citation
Guk-Hyun Kim, Yong-Hee Lee, Akihiko Shinya, and Masaya Notomi, "Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode," Opt. Express 12, 6624-6631 (2004)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-26-6624


Sort:  Journal  |  Reset  

References

  1. H. Y. Ryu, S. H. Kim, H. G. Park, J. K. Hwang, Y. H. Lee, and J. S. Kim, �??Square-lattice photonic bandgap single-cell laser operating in the lowest-order whispering gallery mode,�?? Appl. Phys. Lett. 80, 3883- 3885 (2002). [CrossRef]
  2. K. Srinivasan and O. Painter, �??Momentum space design of high-Q photonic crystal optical cavities,�?? Opt. Express 10, 670-684 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-670">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-670</a.> [CrossRef] [PubMed]
  3. J. Vu�?kovi�? and Y. Yamamoto, �??Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot,�?? Appl. Phys. Lett. 82, 2374-2376 (2003). [CrossRef]
  4. Y. Akahane, T. Asano, B. S. Song, and S. Noda, �??High-Q photonic nanocavity in a two-dimensional photonic crystal,�?? Nature 425, 944-947 (2003). [CrossRef] [PubMed]
  5. H. Y. Ryu, M. Notomi, and Y. H. Lee, �??High-quality-factor and small- mode-volume hexapole modes in photonic-crystal-slab nanocavities,�?? Appl. Phys. Lett. 83, 4294-4296 (2003). [CrossRef]
  6. S. Noda, A. Chutinan, and M. Imada, �??Trapping and emission of photons by a single defect in a photonic bandgap structure,�?? Nature 407, 608-610 (2000). [CrossRef] [PubMed]
  7. H. Takano, Y. Akahane, T. Asano, and S. Noda, �??In-plane-type channel drop filter in a two-dimensional photonic crystal slab,�?? Appl. Phys. Lett. 84, 2226-2228 (2004). [CrossRef]
  8. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Y. Ryu, �??Waveguides, resonators and their coupled elements in photonic crystal slabs,�?? Opt. Express 12, 1551-1561 (2004) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1551">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1551</a.> [CrossRef] [PubMed]
  9. M. F. Yanki, S. Fan, M. Solja�?i�?, and J. D. Joannopoulos, �??All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,�?? Opt. Lett. 28, 2506-2508 (2003). [CrossRef]
  10. M. F. Yanki, S. Fan, and M. Solja�?i�?, �??High-contrast all-optical bistable switching in photonic crystal microcavities,�?? Appl. Phys. Lett. 83, 2739-2741 (2003). [CrossRef]
  11. C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdré, and U. Oesterle, �??Coupled guide and cavity in a two-dimensional photonic crystal,�?? Appl. Phys. Lett. 78, 1487-1489 (2001). [CrossRef]
  12. C. Seassal, Y. Désières, X. Letartre, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, and T. Benyattou, �??Optical coupling between a two-dimensional photonic crystal-based microcavity and single-line defect waveguide on InP membranes,�?? IEEE J. Quantum Electron. 38, 811-815 (2002). [CrossRef]
  13. P. E. Barclay, K. Srinivasan, and O. Painter, �??Design of photonic crystal waveguides for evanescent coupling to optical fiber tapers and integration with high-Q cavities,�?? J. Opt. Soc. Am. B 20, 2274-2284 (2003). [CrossRef]
  14. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, �??Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,�?? Phys. Rev. Lett. 87, 253902 (2001). [CrossRef] [PubMed]
  15. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," 35, 1322-1331 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited