OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 3 — Feb. 9, 2004
  • pp: 468–472

Photonic crystal fiber with a hybrid honeycomb cladding

Niels Asger Mortensen, Martin Dybendal Nielsen, Jacob Riis Folkenberg, Christian Jakobsen, and Harald R. Simonsen  »View Author Affiliations


Optics Express, Vol. 12, Issue 3, pp. 468-472 (2004)
http://dx.doi.org/10.1364/OPEX.12.000468


View Full Text Article

Enhanced HTML    Acrobat PDF (141 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We consider an air-silica honeycomb lattice and demonstrate a new approach to the formation of a core defect. Typically, a high or low-index core is formed by adding a high-index region or an additional air-hole (or other low-index material) to the lattice, but here we discuss how a core defect can be formed by manipulating the cladding region rather than the core region itself. Germanium-doping of the honeycomb lattice has recently been suggested for the formation of a photonic band-gap guiding silica-core and here we experimentally demonstrate how an index-guiding silica-core can be formed by fluorine-doping of the honeycomb lattice.

© 2004 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2400) Fiber optics and optical communications : Fiber properties
(060.2430) Fiber optics and optical communications : Fibers, single-mode

ToC Category:
Research Papers

History
Original Manuscript: January 12, 2004
Revised Manuscript: January 30, 2004
Published: February 9, 2004

Citation
Niels Mortensen, Martin Nielsen, Jacob Folkenberg, Christian Jakobsen, and Harald Simonsen, "Photonic crystal fiber with a hybrid honeycomb cladding," Opt. Express 12, 468-472 (2004)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-3-468


Sort:  Journal  |  Reset  

References

  1. J. C. Knight, �??Photonic crystal fibres,�?? Nature 424, 847�??851 (2003). [CrossRef] [PubMed]
  2. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, �??All-silica single-mode optical fiber with photonic crystal cladding,�?? Opt. Lett. 21, 1547�??1549 (1996). [CrossRef] [PubMed]
  3. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, �??Photonic Band Gap Guidance in Optical Fibers,�?? Science 282, 1476�??1478 (1998). [CrossRef] [PubMed]
  4. J. Lægsgaard and A. Bjarklev, �??Doped photonic bandgap fibers for short-wavelength nonlinear devices,�?? Opt. Lett. 28, 783�??785 (2003). [CrossRef] [PubMed]
  5. B. J. Mangan, J. Arriaga, T. A. Birks, J. C. Knight, and P. S. J. Russell, �??Fundamental-mode cutoff in a photonic crystal fiber with a depressed-index core,�?? Opt. Lett. 26, 1469�??1471 (2001). [CrossRef]
  6. J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and J.-P. de Sandro, �??Large mode area photonic crystal fibre,�?? Electron. Lett. 34, 1347�??1348 (1998). [CrossRef]
  7. N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, A. Petersson, and H. R. Simonsen, �??Improved large-mode area endlessly single-mode photonic crystal fibers,�?? Opt. Lett. pp. 393�??395 (2003). [CrossRef] [PubMed]
  8. M. D. Nielsen, J. R. Folkenberg, and N. A. Mortensen, �??Single-mode photonic crystal fiber with an effective area of 600 µm2 and low bending loss,�?? Electron. Lett. 39, 1802�??1803 (2003). [CrossRef]
  9. M. J. Steel, T. P. White, C. M. de Sterke, R. C. McPhedran, and L. C. Botton, �??Symmetry and degeneracy in microstructured optical fibers,�?? Opt. Lett. 26, 488�??490 (2001). [CrossRef]
  10. M. D. Nielsen, J. R. Folkenberg, and N. A. Mortensen, �??Reduced microdeformation attenuation in large-mode-area photonic crystal fibers for visible applications,�?? Opt. Lett. 28, 1645�??1647 (2003). [CrossRef] [PubMed]
  11. M. D. Nielsen, G. Vienne, J. R. Folkenberg, and A. Bjarklev, �??Investigation of micro deformation induced attenuation spectra in a photonic crystal fiber,�?? Opt. Lett. 28, 236�??238 (2003). [CrossRef] [PubMed]
  12. K. Saitoh and M. Koshiba, �??Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers,�?? IEEE J. Quantum Electron. 38, 927�??933 (2002). [CrossRef]
  13. T. A. Birks, J. C. Knight, and P. S. J. Russell, �??Endlessly single mode photonic crystal fibre,�?? Opt. Lett. 22, 961�??963 (1997). [CrossRef] [PubMed]
  14. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, �??Perturbation theory for Maxwell�??s equations with shifting material boundaries,�?? Phys. Rev. E 65, 066,611 (2002). [CrossRef]
  15. B. T. Kuhlmey, R. C. McPhedran, and C. M. de Sterke, �??Modal cutoff in microstructured optical fibers,�?? Opt. Lett. 27, 1684�??1686 (2002). [CrossRef]
  16. N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen, �??Modal cut-off and the V�??parameter in photonic crystal fibers,�?? Opt. Lett. 28, 1879�??1881 (2003). [CrossRef] [PubMed]
  17. J. R. Folkenberg, N. A. Mortensen, K. P. Hansen, T. P. Hansen, H. R. Simonsen, and C. Jakobsen, �??Experimental investigation of cut-off phenomena in non-linear photonic crystal fibers,�?? Opt. Lett. 28, 1882�??1884 (2003). [CrossRef] [PubMed]
  18. N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, K. P. Hansen, and J. Lægsgaard, �??Small-core photonic crystal fibers with weakly disordered air-hole claddings,�?? J. Opt. A: Pure Appl. Opt. 6, 221�??223 (2004). [CrossRef]
  19. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, �??Optical devices based on liquid crystal photonic bandgap fibres,�?? Opt. Express 11, 2589 �?? 2596 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2589">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2589</a> [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited