OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 4 — Feb. 23, 2004
  • pp: 689–694

Effect of frequency chirping on supercontinuum generation in photonic crystal fibers

Zhaoming Zhu and Thomas G. Brown  »View Author Affiliations


Optics Express, Vol. 12, Issue 4, pp. 689-694 (2004)
http://dx.doi.org/10.1364/OPEX.12.000689


View Full Text Article

Enhanced HTML    Acrobat PDF (235 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Pre-chirp of the input pulse has a significant effect on pulse evolution in a photonic crystal fiber. We present numerical simulations which show that the supercontinuum bandwidth increases with the linear chirp, and that the coherence of supercontinuum improves as frequency chirping increases. An optimal positive chirp is identified that maximizes the supercontinuum bandwidth, corresponding to the formation of only one red-shifting Raman soliton.

© 2004 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(190.5650) Nonlinear optics : Raman effect
(320.1590) Ultrafast optics : Chirping

ToC Category:
Research Papers

History
Original Manuscript: December 16, 2003
Revised Manuscript: February 16, 2004
Published: February 23, 2004

Citation
Zhaoming Zhu and Thomas Brown, "Effect of frequency chirping on supercontinuum generation in photonic crystal fibers," Opt. Express 12, 689-694 (2004)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-4-689


Sort:  Journal  |  Reset  

References

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, �??All-silica single mode optical fiber with photonic crystal cladding,�?? Opt. Lett. 21, 1547�??1549 (1996). [CrossRef] [PubMed]
  2. J. K. Ranka, R. S. Windeler, and A. J. Stentz, �??Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25�??27 (2000). [CrossRef]
  3. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, �??Supercontinuum generation in tapered fibers,�?? Opt. Lett. 25, 1415�??1417 (2000). [CrossRef]
  4. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, �??Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,�?? Opt. Lett. 26, 608�??610 (2001). [CrossRef]
  5. R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, �??Optical frequency synthesizer for precision spectroscopy,�?? Phys. Rev. Lett. 85, 2264�??2267 (2000). [CrossRef] [PubMed]
  6. I. G. Cormack, D. T. Reid, W. J. Wadsworth, J. C. Knight, and P. St. J. Russel, �??Observation of soliton self-frequency shift in photonic crystal fiber,�?? Electron. Lett. 38, 167�??169 (2002). [CrossRef]
  7. A. B. Fedotov, P. Zhou, Y. N. Kondrat�??ev, S. N. Bagayev, V. S. Shevandin, K. V. Dukel�??skii, V. B. Smirnov, A. P. Tarasevitch, D. von der Linde, and A. M. Zheltikov, �??The mode structure and spectral properties of supercontinuum emission from microstructure fibers,�?? JETP 95, 851�??860 (2002). [CrossRef]
  8. A. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, �??Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses,�?? J. Opt. Soc. Am. B 19, 2165�??2170 (2002). [CrossRef]
  9. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weberand, and R. S. Windeler, �??Fundamental noise limitations to supercontinuum generation in microstructure fiber,�?? Phys. Rev. Lett. 90, 113,904 (2003). [CrossRef]
  10. Z. Zhu and T. G. Brown, �??Polarization properties of sumpercontinuum spectra generated in birefringent photonic crystal fibers,�?? J. Opt. Soc. Am. B 21, 249�??257 (2004). [CrossRef]
  11. K. J. Blow and D. Wood, �??Theoretical description of transient stimulated Raman scattering in optical fibers,�?? IEEE J. Quantum Electron. 25, 2665�??2673 (1989). [CrossRef]
  12. A. L. Gaeta, �??Nonlinear propagation and continuum generation in microstructured optical fibers,�?? Opt. Lett. 27, 924�??926 (2002). [CrossRef]
  13. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, 2002).
  14. J. M. Dudley and S. Coen, �??Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,�?? Opt. Lett. 27, 1180�??1182 (2002). [CrossRef]
  15. Y. Wu, C.-Y. Lou, M. Han, T. Wang, and Y.-Z. Gao, �??Effects of pulse chirp on supercontinuum produced in dispersion decreasing fibre,�?? Chin. Phys. 11, 578�??582 (2002). [CrossRef]
  16. A. V. Husakou and J. Herrmann, �??Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,�?? Phys. Rev. Lett. 87, 203901 (2001). [CrossRef] [PubMed]
  17. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, �??Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,�?? Phys. Rev. Lett. 88, 173901 (2002). [CrossRef] [PubMed]
  18. J. P. Gordon, �??Theory of the soliton self-frequency shift,�?? Opt. Lett. 11, 662�??664 (1986). [CrossRef] [PubMed]
  19. F. G. Omenetto, B. P. Luce, and A. J. Taylor, �??Genetic algorithms pulse shaping for optimum femtosecond propagation in optical fibers,�?? J. Opt. Soc. Am. B 16, 2005�??2009 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited