OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 5 — Mar. 8, 2004
  • pp: 797–810

Analysis for long period fiber gratings using thermal kernel function

Jinho Bae, Jun Kye Bae, Sang Hyuck Kim, Sang Bae Lee, and Joohwan Chun  »View Author Affiliations

Optics Express, Vol. 12, Issue 5, pp. 797-810 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (725 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



To analyze the various LPFGs with thermal changes, we present how makes the kernel function to translate the information of thermal change into the coupling coefficient and detuning factor changed by temperature. We propose the extended fundamental matrix model with the proposed kernel function. To verify the validity of the proposed model experimentally, we have manufactured the LPFG structures with the thermal changes using the divided coil heater. We have observed that the transmission spectra calculated using the proposed model are close to the corresponding measured spectra in the wavelength band of interest.

© 2004 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(070.6020) Fourier optics and signal processing : Continuous optical signal processing

ToC Category:
Research Papers

Original Manuscript: January 29, 2004
Revised Manuscript: February 12, 2004
Published: March 8, 2004

Jinho Bae, Jun Bae, Sang Kim, Sang Lee, and Joohwan Chun, "Analysis for long period fiber gratings using thermal kernel function," Opt. Express 12, 797-810 (2004)

Sort:  Journal  |  Reset  


  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, �??Long-Period Fiber Gratings as Band-Rejection Filters,�?? J. Lightwave Technol. 14, 58-64 (1996). [CrossRef]
  2. J. Bae, J. Chun, and S. B. Lee, �??Two methods for synthesizing the long period fiber gratings with the inverted Erbium gain spectrum,�?? Jpn. J. Appl. Phys. Part 2, 38, L819-L822 (1999). [CrossRef]
  3. Y. Liu, J. A. R.Williams, L. Zhang, and I. Bennion, �??Phase shifted and cascaded long-period fiber gratings,�?? Opt. Commun. 164, 27-31 (1999). [CrossRef]
  4. M. Harumoto, M. Shigehara, and H. Suganuma, �??Gain-flattening filter using lonp-period fiber gratings,�?? J. Lightwave Technol. 21, 1027-1033 (2002). [CrossRef]
  5. X. Gu, �??Wavelength-division multiplexing isolation fiber filter and light source using cascaded long-period fiber gratings,�?? Opt. Lett. 23, 509-590 (1998). [CrossRef]
  6. A. Othonos and K. Kalli, Fiber Bragg Gratings - Fundamentals and Applications in Telecommunications and Sensing, (Artech House, Boston, 1999).
  7. Y. Han, C. S. Kim, U. C. Paek, and Y. Chung, �??Performance enhancement of long period fiber gratings for strain and temperature sensing,�?? IEICE Trans. Electron. E83-C, 1-6 (2000).
  8. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, �??Fiber Grating Sensors,�?? J. Lightwave Technol. 15, 1442-1463 (1997). [CrossRef]
  9. J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, and J. M Jeong, �??Spectral shape tunable band-rejection filter using a long-period fiber grating with divided coil heaters,�?? IEEE Photon. Technol. Lett. 15, 407-409 (2003). [CrossRef]
  10. S. Matsumoto, T. Ohira, M. Takabayashi, and K. Yoshiara, �??Tunable dispersion equalizer with a divided thin-film heater for 40-Gb/s RZ transmissions,�?? IEEE Photon. Technol. 13, 827-829 (2001). [CrossRef]
  11. T. Erdogan, �??Fiber Grating Spectra,�?? J. Lightwave Technol. 15, 1277-1294 (1997). [CrossRef]
  12. T. Erdogan, �??Cladding-mode resonances in short- and long-period fiber grating filters,�?? J. Opt. Soc. Am. A 14, 1760-1773 (1997). [CrossRef]
  13. M. Yamada and K. Sakuda, �??Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach,�?? Appl. Opt. 26, 3474-3478 (1987). [CrossRef] [PubMed]
  14. J. Bae, J. Chun, and S. B. Lee, �??Multiport Lattice Filter Model for Long-Period Fiber Gratings,�?? Jpn. J. Appl. Phys. Part 1 39, 6576-6577 (2000). [CrossRef]
  15. X. Shu, T. Allsop, B. Gwandu, and L. Zhang, �??High-temperature Sensitivity of Long-Period Grating in B-Ge Codoped Fiber,�?? IEEE Photon. Technol. Lett. 13, 818-820 (2001). [CrossRef]
  16. I. O. Bohachevsky, M. E. Johnson, and M. L. Stein, �??Generalized simulated annealing for function optimzation,�?? Technometrics 28, 209-217 (1986). [CrossRef]
  17. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2th ed. (Cambridge, New York, 1992).
  18. J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, (Springer-Verlag, New York, 1980).
  19. X. Shu, L. Zhang, and I, Bennion �??Sensitivity characteristics of long-period Fiber gratings,�?? J. Lightwave Technol. 20, 255-266 (2002). [CrossRef]
  20. H. Kim, J. Bae, J.W. Lee, J. Chun, and S. B. Lee, �??Analysis of Concatenated Long Period Fiber Gratings Having Phase-Shifted and Cascaded Effects,�?? Jpn. J. Appl. Phys. Part 1 42, 5098-5101 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited