OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 6 — Mar. 22, 2004
  • pp: 1179–1184

Torque-generating malaria-infected red blood cells in an optical trap

J.A. Dharmadhikari, S. Roy, A.K. Dharmadhikari, S. Sharma, and D. Mathur  »View Author Affiliations


Optics Express, Vol. 12, Issue 6, pp. 1179-1184 (2004)
http://dx.doi.org/10.1364/OPEX.12.001179


View Full Text Article

Enhanced HTML    Acrobat PDF (432 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have used optical tweezers to trap normal and Plasmodium-infected red blood cells (iRBCs). Two different facets of the behavior of RBCs in infrared light fields emerge from our experiments. Firstly, while the optical field modifies both types of RBCs in the same fashion, by folding the original biconcave disk into a rod-like shape, iRBCs rotate with linearly polarized light whereas normal RBCs do not. Secondly, and in the context of known molecular motors, our measurements indicate that the torque of rotating iRBCs is up to three orders of magnitude larger.

© 2004 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.1420) Medical optics and biotechnology : Biology
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation

ToC Category:
Research Papers

History
Original Manuscript: January 20, 2004
Revised Manuscript: March 17, 2004
Published: March 22, 2004

Citation
J. Dharmadhikari, S. Roy, A. Dharmadhikari, S. Sharma, and Deepak Mathur, "Torque-generating malaria-infected red blood cells in an optical trap," Opt. Express 12, 1179-1184 (2004)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-6-1179


Sort:  Journal  |  Reset  

References

  1. A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, and S. Chu, �??Observation of a single-beam gradient force optical trap for dielectric particles,�?? Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  2. K. Schutze, G. Posl, and G. Lahr, �??Laser micromanipulation systems as universal tools in cellular and molecular biology and in medicine,�?? Cell. Mol. Biol. 44, 735-746 (1998). [PubMed]
  3. M. Zahn, and S. Seeger, �??Optical tweezers in pharmacology,�?? Cell. Mol. Biol. 44, 747-761 (1998). [PubMed]
  4. A. Clement-Sengewald, K. Schutze, A. Ashkin, G.A. Palma, G. Kerlen, and G. Brem, �??Fertilization of bovine oocytesinduced solely with combined laser microbeam and optical tweezers,�?? J. Assisted Reproduction Genetics 13, 259-265 (1996). [CrossRef]
  5. M. Zahn, J. Renken, and S. Seeger, �??Fluorimetric multiparameter cell assay at the single cell level fabricated by optical tweezers,�?? FEBS Lett. 443, 337-340 (1999). [CrossRef] [PubMed]
  6. C. Bustamante, Z. Bryant, and S.B. Smith, �??Ten years of tension: single-molecule DNA mechanics,�?? Nature 421, 423-427 (2003). [CrossRef] [PubMed]
  7. A. Krantz, �??Red-cell mediated therapy: opportunities and challenges,�?? Blood Cells, Molecules and Diseases 23, 58-68 (1997). [CrossRef]
  8. J.P. Shelby, J. White, K. Ganeshan, P.K. Rathod, and D.T. Chiu, �??A microfluidic model for single-cell capillary obstruction by Plasmodium falcipuram-infected erythrocytes,�?? PNAS 100, 14618-14622 (2003). [CrossRef] [PubMed]
  9. H.A. Cranston, C.W. Boylan, G.L. Carroll, S.P. Sutera, J.R. Williamson, I.Y. Gluzman, and D.J. Krogstad, �??Plasmodium falcipuram maturation abolishes Physiologic Red cell deformability,�?? Science 223, 400-403 (1984). [CrossRef] [PubMed]
  10. H.G. Roggenkamp, F. Jung, R. Schneider, and H. Kiesewetter, �??A new device for the routine measurement of erythrocyte deformability,�?? Biorheology Suppl. 1, 241-243 (1984). [PubMed]
  11. R.A. Beth, �??Mechanical detection and measurement of the angular momentum of light,�?? Phys. Rev. 50, 115-125 (1936). [CrossRef]
  12. M.E.J. Friese, J. Enger, H. Rubinsztein-Dunlop, and R.N. Heckenberg, �??Optical angular-momentum transfer to trapped absorbing particles,�?? Phys. Rev. A 54, 1593-1596 (1996). [CrossRef] [PubMed]
  13. N.B. Simpson, K. Dholakia, N. Allen, and M.J. Padgett, �??Mechanical equivalent of the spin and orbital angular momentum of light: an optical spanner,�?? Opt. Lett. 22, 52-54 (1997). [CrossRef] [PubMed]
  14. L. Paterson, M.P. MacDonald, J. Arlt, W. Sibbett, P.E. Bryant, and K. Dholakia, �??Controlled rotation of optically-trapped microscopic particles,�?? Science 292, 912-914 (2001) [CrossRef] [PubMed]
  15. M.E.J. Friese, T.A. Nieminen, R.N. Heckenberg, and H. Rubinsztein-Dunlop, �??Optical alignment and spinning of laser-trapped microscopic particles,�?? Nature 394, 348-350 (1998). [CrossRef]
  16. L.D. Landau, and E.M. Lifshitz, Theory of elasticity, (Pergamon Press, New York, 1959) p. 56.
  17. S. Henon, G. Lenormand, A. Richert, and F. Gallet, �??A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,�?? Biophys. J. 76, 1145-1151 (1999). [CrossRef] [PubMed]
  18. C. Duranton, S.M. Huber, V. Tanneur, K.S. Lang, B.B. Brand, C.D. Sandu, and F. Lang, �??Electrophysiological properties of the Plasmodium falciparum-induced cation conductance of human erythrocytes,�?? Cell Phys. Biochem. 13, 189-198 (2003). [CrossRef]
  19. H.M. Staines, J.C. Ellory, and K. Kirk, �??Perturbation of the pump-leak balance of Na+ and K+ in malariainfected erythrocytes,�?? Am. J. Physiol. Cell Physiol. 380, C1575-C1587 (2001).
  20. A.J. Hunt, F. Gittes, and J. Howard, �??The force exerted by a single kinesin molecule against a viscous load,�?? Biophys. J. 67, 766-781 (1994). [CrossRef] [PubMed]
  21. C. Lambros, and J.P. Vanderberg, �??Synchronization of Plasmodium falciparum erythrocytic stages in culture,�?? J. Parasitol. 65, 418-420 (1979). [CrossRef] [PubMed]
  22. F.F. Vargas, M.H. Osorio, U.S. Ryan, and M. De Jesus, �??Surface charge of endothelial cells estimated from electrophoretic mobility,�?? Membr. Biochem. 8, 221-227 (1989). [CrossRef] [PubMed]
  23. B.T. Marshall, M. Long, J.W. Piper, T. Yago, R.P. McEver, and C. Zhu, �??Direct observation of catch bonds involving cell-adhesion molecules,�?? Nature 423, 190-193 (2003). [CrossRef] [PubMed]
  24. B.M. Cooke, N. Mohandas, and R.L. Coppel, �??The malaria-infected red blood cell: structural and functional changes,�?? Adv. Parasitol. 50, 1-86 (2001). [CrossRef]
  25. K. Ley, �??Integration of inflammatory signals by rolling neutrophils,�?? Immunol. Rev. 186, 8-18 (2002). [CrossRef] [PubMed]
  26. H. Noji., R. Yasuda., M. Yoshida, and K. Kinosita, �??Direct observation of the rotation of F1-ATPase,�?? Nature 386, 299-302 (1997). [CrossRef] [PubMed]
  27. W.S. Ryu, R.M. Berry, and H.C. Berg, �??Torque generating units of the flagellar motor of Escherichia coli have a high duty ratio,�?? Nature 403, 444-447 (2000). [CrossRef] [PubMed]
  28. K. Kinosita Jr., R.Yasuda, H. Noji, and K. Adachi, �??A rotary molecular motor that can work at near 100% efficiency,�?? Phil. Trans. Roy. Soc. London B 355, 473-489 (2000). [CrossRef] [PubMed]
  29. A. Goswami, S. Singh, V.D. Redkar, and S. Sharma, �??Characterization of P0, a ribosomal phosphoprotein of Plasmodium falciparum,�?? J. Biol. Chem. 272, 12138-12143 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

Multimedia

Multimedia FilesRecommended Software
» Media 1: MPG (326 KB)     
» Media 2: MPG (1012 KB)     
» Media 3: MPG (1266 KB)     
» Media 4: MPG (1174 KB)     

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited