OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 6 — Mar. 22, 2004
  • pp: 990–1003

Production of quasi-crystal template patterns using a dual beam multiple exposure technique

Robert C. Gauthier and Alexei Ivanov  »View Author Affiliations


Optics Express, Vol. 12, Issue 6, pp. 990-1003 (2004)
http://dx.doi.org/10.1364/OPEX.12.000990


View Full Text Article

Enhanced HTML    Acrobat PDF (2433 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a dual beam multiple exposure technique that can generate complex 2-D quasi-crystal template structures. The optical system is based on the interference of two laser beams producing a family of high intensity planes. Controlled reorientation of a photosensitive sample between exposures results in an exposure dose, when developed, returns a quasi-crystal pattern. Results are shown in which quasi-crystal patterns with 8, 10, and 12-fold rotation symmetry are produced in photoresist. The results of several test runs are shown in which the quasi-crystal patterns developed in photoresist are subsequently etched into silicon. Based on an extended application of the dual beam multiple exposure optical system, a potential technique for producing 3-D quasi-crystal patterns is presented.

© 2004 Optical Society of America

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.4000) Optical design and fabrication : Microstructure fabrication

ToC Category:
Research Papers

History
Original Manuscript: February 6, 2004
Revised Manuscript: March 5, 2004
Published: March 22, 2004

Citation
Robert Gauthier and Alexei Ivanov, "Production of quasi-crystal template patterns using a dual beam multiple exposure technique," Opt. Express 12, 990-1003 (2004)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-6-990


Sort:  Journal  |  Reset  

References

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John and T. Quang, "Spontaneous emission near the edge of a photonic band gap," Phys. Rev. A 50, 1764-1769 (1994). [CrossRef] [PubMed]
  3. See for instance; K. Sakoda, Optical properties of photonic crystals, (Springer-Verlag Berlin 2001)
  4. See for instance; M. Loncar, T. Doll, J. Vuckovic and A. Scherer, "Design and fabrication of photonic crystal optical waveguides," J. Opt. Laser Technol. 18, 1402-1411 (2000).
  5. Y. S. Chan, C. T. Chang and Z. Y. Liu, "Photonic band gaps in two dimensional photonic quasicrystals," Phys. Rev. Lett. 80, 956-959 (1998). [CrossRef]
  6. Z. Ouyang, C. Jin, D. Zhang, B. Cheng, X. Meng, G. Yang and J. Li, "Photonic bandgaps in two-dimensional short-range periodic structures," J. Opt. A: Pure Appl. Opt. 4, 23-28 (2002). [CrossRef]
  7. X. Zhang, Z. Q. Zhang and C. T. Chang, "Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals," Phys. Rev. B. 63, 081105-1 to 081105-5 (2001). [CrossRef]
  8. M. Koshiba and K. Saitoh, "Finite-element analysis of birefringence and dispersion in actual an idealized holey-fiber structures," Appl. Opt. 42, 6267-6275 (2003). [CrossRef] [PubMed]
  9. C. Jin, B. Cheng, B. Man, Z. Li, D. Zhang, S. Ban and B. Sun, "Band gap and wave guiding effect in a quasiperiodic photonic crystal," Appl. Phys. Lett. 75, 1848-1850 (1999). [CrossRef]
  10. S. S. M. Cheng, L. M. Li, C. T. Chan and Z. Q. Zhang, "Defect and transmission properties of two-dimensional quasiperiodic photonic band-gap systems," Phys. Rev. B 59, 4091-4098 (1999). [CrossRef]
  11. L. Z. Cai, X. L. Yang and Y. R. Wang, "Formation of three-dimensional periodic microstructures by interference of four noncoplanar beams," J. Opt. Soc. Am. A 19, 2238-2244 (2002). [CrossRef]
  12. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000). [CrossRef] [PubMed]
  13. X. Wang, C.Y. Ng, W. Y. Tam, C. T. Chan and P. Sheng, "Large-area two-dimensional mesoscale quasicrystals," Adv. Mater. 15, 1526-1528 (2003). [CrossRef]
  14. M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. De La Rue and P. Millar, "The design of two-dimensional photonic quasicrystals by means of a Fourier transform method," J. Mod. Opt. 48, 9-14 (2001).
  15. M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. De La Rue and P. Millar, "Two-dimensional Penrose-tiled photonic quasicrystals; diffraction of light and fractal density of modes," J. Mod. Opt. 47, 1771- 1778 (2000).
  16. M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumerg and M. C. Netti, "Complete photonic bandgaps in 12-fold symmetric quasicrystals," Nature 404, 740-743 (2000). [CrossRef] [PubMed]
  17. J. D. Joannopoulus, R. D. Meade and J. N. Winn, Photonic crystals; Modeling the flow of light, (Princeton University Press, 1995).
  18. S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. Chaikin and W. B. Russel, "Creating periodic three-dimensional structures by multibeam interference of visible laser," Chem. Mater. 14, 2831-2833 (2002). [CrossRef]
  19. Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Kock, C. Enrich, M. Deubel and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited