OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 7 — Apr. 5, 2004
  • pp: 1185–1191

Generation of a broadband spectral comb with multiwave mixing by exchange of an impulsively stimulated phonon

Jun-ichi Takahashi, Yutaka Kawabe, and Eiichi Hanamura  »View Author Affiliations


Optics Express, Vol. 12, Issue 7, pp. 1185-1191 (2004)
http://dx.doi.org/10.1364/OPEX.12.001185


View Full Text Article

Enhanced HTML    Acrobat PDF (598 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A broadband spectral comb is generated around the third harmonics of incident light with the nondegenerate, impulsively stimulated Raman scattering technique using ultrashort light pulses. The comb has a spectral width of more than 4000 cm-1, and its envelope becomes smooth as the light powers are increased. It consists of discrete lines, the spacing of which is equal to the frequency of the Raman-active phonon mode, even though the frequency of the phonon mode is far smaller than the frequency difference between the two incident light pulses. The multiline structure is generated with multiwave mixing by exchange of the impulsively stimulated phonon among the signals.

© 2004 Optical Society of America

OCIS Codes
(190.4160) Nonlinear optics : Multiharmonic generation
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(190.5650) Nonlinear optics : Raman effect
(190.5890) Nonlinear optics : Scattering, stimulated
(320.2250) Ultrafast optics : Femtosecond phenomena

ToC Category:
Research Papers

History
Original Manuscript: December 19, 2003
Revised Manuscript: March 9, 2004
Published: April 5, 2004

Citation
Jun-ichi Takahashi, Yutaka Kawabe, and Eiichi Hanamura, "Generation of a broadband spectral comb with multiwave mixing by exchange of an impulsively stimulated phonon," Opt. Express 12, 1185-1191 (2004)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-7-1185


Sort:  Journal  |  Reset  

References

  1. A. M. Weiner, �??Femtosecond pulse shaping using spatial light modulators,�?? Rev. Sci. Instrum. 71, 1929-1960 (2000). [CrossRef]
  2. J. K. Ranka, R. S. Windeler, and A. J. Stentz, �??Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25-27 (2000). [CrossRef]
  3. Z. Chang, A. Rundquist, H. Wang, M. M. Murnane, and H. C. Kapteyn, �??Generation of coherent soft X rays at 2.7 nm using high harmonics,�?? Phys. Rev. Lett. 79, 2967-2970 (1997). [CrossRef]
  4. A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, �??Raman generation by phased and antiphased molecular states,�?? Phys. Rev. Lett. 85, 562-565 (2000). [CrossRef] [PubMed]
  5. S. Yoshikawa and T. Imasaka, �??A new approach for the generation of ultrashort optical pulses,�?? Opt. Commun. 96, 94-98 (1993). [CrossRef]
  6. S. E. Harris and A.V. Sokolov, �??Subfemtosecond pulse generation by molecular modulation,�?? Phys. Rev. Lett. 81, 2894-2897 (1998). [CrossRef]
  7. M. Wittmann, A. Nazarkin, and G. Korn, �??fs-pulse synthesis using phase modulation by impulsively excited molecular vibrations,�?? Phys. Rev. Lett. 84, 5508-5511 (2000). [CrossRef] [PubMed]
  8. N. A. Papadogiannis, B. Witzel, C. Kalpouzos, and D. Charalambidis, �??Observation of attosecond light localization in higher order harmonic generation,�?? Phys. Rev. Lett. 83, 4289-4292 (1999). [CrossRef]
  9. D. Meshulach and Y. Silberberg, �??Coherent quantum control of two-photon transitions by a femtosecond laser pulse,�?? Nature 396, 239-242 (1998). [CrossRef]
  10. W. S. Warren, H. Rabitz, and M. Dahleh, �??Coherent control of chemical reactions: the dream is alive,�?? Science 259, 1581-1589 (1993). [CrossRef] [PubMed]
  11. S. A. Rice, �??Molecular dynamics: optical control of reactions,�?? Nature 403, 496-497 (2000). [CrossRef] [PubMed]
  12. Th. Udem, R. Holzwarth, and T. W. Hänsch, �??Optical frequency metrology,�?? Nature 416, 233-237 (2002). [CrossRef] [PubMed]
  13. J.-I.Takahashi, E. Matsubara, T. Arima, and E. Hanamura, �??Coherent multistep anti-Stokes and stimulated Raman scattering associated with third harmonics in YFeO3 crystals,�?? Phys. Rev. B 68, 155102 (2003). [CrossRef]
  14. S. Venugopalan, M. Dutta, A. K. Ramdas, and J. P. Remeika, �??Magnetic and vibrational excitations in rareearth orthoferrites: a Raman scattering study,�?? Phys. Rev. B 31, 1490-1497 (1985). [CrossRef]
  15. S. De Silvestri, J.G. Fujimoto, E. P. Ippen, E. B. Gamble, Jr., L. R. Williams, and K. A. Nelson, �??Femtosecond time-resolved measurements of optic phonon dephasing by impulsive stimulated Raman scattering in á-perylene crystal from 20-300 K,�?? Chem. Phys. Lett. 116, 146-152 (1985). [CrossRef]
  16. H. J. Zeiger, J. Vidal, T. K. Cheng, E. P. Ippen, G. Dresselhaus, and M. S. Dresselhaus, �??Theory for displacive excitation of coherent phonons,�?? Phys. Rev. B 45, 768-778 (1992). [CrossRef]
  17. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, Hoboken, N. J., 2003), p. 163.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited