OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 7 — Apr. 5, 2004
  • pp: 1249–1257

Coherent DIAL profiling in turbulent atmosphere

Aniceto Belmonte  »View Author Affiliations

Optics Express, Vol. 12, Issue 7, pp. 1249-1257 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (290 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Because of the presence of atmospheric refractive turbulence, it is necessary to use simulations of beam propagation to examine the uncertainty added to the differential absorption lidar (DIAL) measurement process of a practical heterodyne lidar. The outcomes of our analysis illustrate the relative sensitivity of coherent DIAL systems under general atmospheric conditions and different instrument configurations.

© 2004 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.3640) Atmospheric and oceanic optics : Lidar
(030.6600) Coherence and statistical optics : Statistical optics
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar

ToC Category:
Research Papers

Original Manuscript: January 22, 2004
Revised Manuscript: March 8, 2004
Published: April 5, 2004

Aniceto Belmonte, "Coherent DIAL profiling in turbulent atmosphere," Opt. Express 12, 1249-1257 (2004)

Sort:  Journal  |  Reset  


  1. B. J. Rye, �??Antenna parameters for incoherent backscatter heterodyne lidar,�?? Appl. Opt. 18, 1390-1398 (1979). [CrossRef] [PubMed]
  2. R. G. Frehlich and M. J. Kavaya, �??Coherent laser radar performance for general atmospheric refractive turbulence,�?? Appl. Opt. 30, 5325-5352 (1991). [CrossRef] [PubMed]
  3. A. Belmonte and B. J. Rye, �??Heterodyne lidar returns in turbulent atmosphere: performance evaluation of simulated systems,�?? Appl. Opt. 39, 2401-2411 (2000). [CrossRef]
  4. B. J. Rye, �??Refractive-turbulent contribution to incoherent backscatter heterodyne lidar returns,�?? J. Opt. Soc. Am. 71, 687-691 (1981). [CrossRef]
  5. G. Guérit, P. Drobinski, P. H. Flamant, and B. Augière, �??Analytical empirical expressions of the transverse coherence properties for monostatic and bistatic lidars in the presence of moderate atmospheric refractive-index turbulence,�?? Appl. Opt. 40, 4275-4285 (2001). [CrossRef]
  6. J. Martin, �??Simulation of wave propagation in random media: theory and applications,�?? in Wave Propagation in Random Media (Scintillation), V. I. Tatarskii, A. Ishimaru, and V. Zavorotny, eds., SPIE, Washington (1993).
  7. A. Belmonte, �??Feasibility study for the simulation of beam propagation: consideration of coherent lidar performance,�?? Appl. Opt. 39, 5426-5445 (2000). [CrossRef]
  8. A. Belmonte, �??Analyzing the efficiency of a practical heterodyne lidar in the turbulent atmosphere: telescope parameters,�?? Opt. Express 11, 2041-2046 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-17-2041">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-17-2041</a>. [CrossRef] [PubMed]
  9. A. Belmonte, �??Angular misalignment contribution to practical heterodyne lidars in the turbulent atmosphere,�?? Opt. Express 11, 2525-2531 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2525">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2525</a>. [CrossRef] [PubMed]
  10. A. Belmonte, �??Coherent power measurement uncertainty resulting from atmospheric turbulence,�?? Opt. Express 12, 168-175 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-168">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-168</a>. [CrossRef] [PubMed]
  11. M. J. Kavaya, S. W. Henderson, E. C. Russell, R. M. Huffaker, and R. G. Frehlich, �??Monte Carlo computer simulations of ground-based and space-based coherent DIAL water vapor profiling,�?? Appl. Opt. 28, 840-851 (1989). [CrossRef] [PubMed]
  12. G. J. Koch, A. N. Dharamsi, C. M. Fitzgerald, and J. C. McCarthy, �??Frequency stabilization of a Ho:Tm:YLF laser to absorption lines of carbon dioxide,�?? Appl. Opt. 39, 3664-3669 (2000). [CrossRef]
  13. R. M. Hardesty, �??Coherent DIAL measurement of range-resolved water vapor concentration,�?? Appl. Opt. 23, 2545-2553 (1984). [CrossRef] [PubMed]
  14. Y. Zhao, �??Line-pair selections for remote sensing of atmospheric ammonia by use of a coherent CO2 differential absorption lidar system,�?? Appl. Opt. 39, 997-1007 (2000). [CrossRef]
  15. W. A. Brewer, V. Wulfmeyer, R. M. Hardesty, and B. Rye, �??Combined wind and water-vapor measurements using the NOAA mini-MOPA Doppler lidar,�?? in 19th International Laser Radar Conference (NASA/CP-1998-207671/PT1 NASA, Washington, D.C., 1998), pp. 565-568.
  16. R. M. Measures, Laser Remote Sensing. Fundamentals and Applications (Wiley-Interscience, New York, 1984).
  17. M. G. Kendall and A. Stuart, Advanced Theory of Statistics, 6th ed. (Edward Arnold, London, 1994).
  18. L. C. Andrews, �??An analytical model for the refractive-index power spectrum and its application to optical scintillation in the atmosphere,�?? J. Mod. Opt. 39, 1849-1853, 1992. [CrossRef]
  19. See papers presented at the DIAL session of the Twelfth Biennial Coherent Laser Radar Technology and Applications Conference, Bar Harbor, Me., June 15�??20, 2003.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited