OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 7 — Apr. 5, 2004
  • pp: 1397–1408

Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals

Chin-ping Yu and Hung-chun Chang  »View Author Affiliations

Optics Express, Vol. 12, Issue 7, pp. 1397-1408 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (228 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A finite-difference frequency-domain method based on the Yee’s cell is utilized to analyze the band diagrams of two-dimensional photonic crystals with square or triangular lattice. The differential operator is replaced by the compact scheme and the index average scheme is introduced to deal with the curved dielectric interfaces in the unit cell. For the triangular lattice, the hexagonal unit cell is converted into a rectangular one for easier mesh generation. The band diagrams for both square and triangular lattices are obtained and the numerical convergence of computed eigen frequencies is examined and compared with other methods.

© 2004 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Research Papers

Original Manuscript: February 20, 2004
Revised Manuscript: March 25, 2004
Published: April 5, 2004

Chin-ping Yu and Hung-chun Chang, "Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals," Opt. Express 12, 1397-1408 (2004)

Sort:  Journal  |  Reset  


  1. E. Yablonovitch, �??Inhibited Spontaneous Emission in Solid-State Physics and Electronics,�?? Phys. Rev. Lett. 58, 2059�??2062 (1987). [CrossRef] [PubMed]
  2. S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486�??2489 (1987). [CrossRef] [PubMed]
  3. K. M. Ho, C. T. Chan, and C. M. Soukoulis, �??Existance of photonic gap in periodic dielectric structures,�?? Phys. Rev. Lett. 65, 3152�??3155 (1990). [CrossRef] [PubMed]
  4. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystal: modeling the flow of light (Princeton University Press., Princeton, NJ, 1995)
  5. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulous, �??Existance of a photonic band gap in two dimensions,�?? Appl. Phys. Lett. 61, 495�??497 (1992). [CrossRef]
  6. M. Plihal and A. A. Maradudin,�??Photonic band structure of two-dimensional system: The triangular lattice,�?? Phys. Rev. B 44, 8565�??8571 (1991). [CrossRef]
  7. C. T. Chan, Q. L. Yu, and K. M. Ho, �??Order-N spectral method for electromagnetic waves,�?? Phys. Rev. 51, 16635�??16642 (1995). [CrossRef]
  8. M. Qiu, and S. He, �??A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimaensional photonic crystal with dielectric and metalic inclusions,�?? Appl. Phys. 87, 8268�??8275 (1992).
  9. M. J. Robertson, S. Ritchie, and P. Dayan, �??Semiconductor waveguides: analysis of optical propagation in single rib structures and directional couplers,�?? Inst. Elec. Eng. Proc. J. 132, 336�??342 (1985).
  10. M. S. Stern, �??Semivectorial polarized finite difference method for optical waveguides with arbitrary index pro-files,�?? Inst. Elec. Eng. Proc. J. 135, 56�??63 (1988).
  11. C. Vassallo, �??Improvement of finite difference methods for step-index optical waveguides,�?? Inst. Elec. Eng. Proc. J. 139, 137�??142 (1992).
  12. K. Bierwirth, N. Schulz, and F. Arndt, �??Finite-difference analysis of rectangular dielectric waveguides by a new finite difference method,�?? J. Lightwave Technol. 34, 1104�??1113 (1986).
  13. P. Lusse, P. Stuwe, J. Schule, and H.-G. Unger, �??Analysis of vectorial mode fields in optical waveguides by a new finite difference method,�?? J. Lightwave Technol. 12, 487�??494 (1994). [CrossRef]
  14. G. R. Hadley and R. E. Smith, �??Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions,�?? J. Lightwave Technol. 13, 465�??469 (1994). [CrossRef]
  15. C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, �??Full-vectorial mode calculations by finite difference method,�?? Inst. Elec. Eng. Proc. J. 141, 281�??286 (1994). [CrossRef]
  16. W. P. Huang, C. L. Xu, S. T. Chu, and S. K. Chaudhuri, �??The finite-difference vector beam propagation method. Analysis ans Assessment,�?? J. Lightwave Technol. 10, 295�??305 (1992). [CrossRef]
  17. C. L. Xu W. P. Huang, and S. K. Chaudhuri, �??Efficient and accurate vector mode calculations by beam propagation method,�?? J. Lightwave Technol. 11, 1209�??1215 (1993). [CrossRef]
  18. K. S. Yee, �??Numerical solution of initial boundary value problems involing Maxwell�??s equations on isotropic media,�?? IEEE Trans. Antenna Propagat. 14, 302�??307 (1966). [CrossRef]
  19. T. Ando, H. Nakayama, S. Numata, J. Yamauchi, and H. Nakano, �??Eigenmode analysis of optical waveguides by a Yee-mesh-based imaginary-distance propagation method for an arbitrary dielectric interface,�?? J. Lightwave Technol. 20, 1627�??1634 (2002). [CrossRef]
  20. Z. Zhu and T. G. Brown, �??Full-vectorial finite-difference analysis of microstructured optical fibers,�?? Opt. Express 10, 853�??864 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-17-853">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-17-853</a> [CrossRef] [PubMed]
  21. H. Y. D. Yang, �??Finite difference analysis of 2-D photonic crystals,�?? IEEE. Trans. Microwave Theory Tech. 34, 2688�??2695 (1996). [CrossRef]
  22. L. Shen, S. He, and A. Xiao, "A finite-difference eigenvalue algorithm for calculating the band structure of a photonic crystal,�?? Comp. Phys. Commun. 143, 213�??221 (2002). [CrossRef]
  23. A. Yefet and E. Turkel, �??Fourth order compact implicit method for the Maxwell equations with discontinuous coefficients,�?? Appl. Numer. Math. 33, 125�??134 (2000). [CrossRef]
  24. Y. P. Chiou, Y. C. Chiang, and H. C. Chang, �??Improved three-point formulas considering the interface conditions in the finite-difference analysis of step-index optical devices,�?? J. Lightwave Technol. 18, 243�??251 (2000). [CrossRef]
  25. Y. C. Chiang, Y. P. Chiou, and H. C. Chang, �??Improved full-vectorial finite-difference mode solver for optical waveguides with step-index profiles,�?? J. Lightwave Technol. 20, 1609�??1618 (2002). [CrossRef]
  26. S. G. Johnson and J. D. Joannopoulos, �??Block-iterative frequency-domain methods for Maxwell�??s equations in a planewave basis,�?? Opt. Express 8, 173�??190 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a> [CrossRef] [PubMed]
  27. R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulous, and O. L. Alerhand, �??Accurate theoretical analysis of photonic band-gap materials,�?? Phys. Rev. B 48, 8434�??8437 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited