OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 8 — Apr. 19, 2004
  • pp: 1485–1496

Surface modes in air-core photonic band-gap fibers

James A. West, Charlene M. Smith, Nicholas F. Borrelli, Douglas C. Allan, and Karl W. Koch  »View Author Affiliations

Optics Express, Vol. 12, Issue 8, pp. 1485-1496 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (1348 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a detailed description of the role of surface modes in photonic band-gap fibers (PBGFs). A model is developed that connects the experimental observations of high losses in the middle of the transmission spectrum to the presence of surface modes supported at the core-cladding interface. Furthermore, a new PBGF design is proposed that avoids these surface modes and produces single-mode operation.

© 2004 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2430) Fiber optics and optical communications : Fibers, single-mode

ToC Category:
Focus Issue: Photonic crystals and holey fibers

Original Manuscript: March 2, 2004
Revised Manuscript: March 28, 2004
Published: April 19, 2004

James West, Charlene Smith, Nicholas Borrelli, Douglas Allan, and Karl Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Express 12, 1485-1496 (2004)

Sort:  Journal  |  Reset  


  1. N. Venkataraman, M.T. Gallagher, D. Müller, Charlene M. Smith, J. A. West, K. W. Koch, and J. C. Fajardo, �??Low-Loss (13 dB/km) Air-Core Photonic Band-Gap Fibre�??, Proceedings of ECOC 2002 (Copenhagen, Denmark, 2002) PD1.1.
  2. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003). [CrossRef] [PubMed]
  3. K. Saitoh and M. Koshiba, "Leakage loss and group velocity dispersion in air-core photonic bandgap fibers," Opt. Express 11, 3100-3109 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3100">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3100</a>. [CrossRef] [PubMed]
  4. K. Saitoh, N. A. Mortensen, and M. Koshiba, "Air-core photonic band-gap fibers: the impact of surface modes," Opt. Express 12, 394-400 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-394">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-394</a>. [CrossRef] [PubMed]
  5. D. C. Allan, et al., Photonic Crystals and Light Localization in the 21st Century, C. M. Soukoulis (ed.), (Kluwer Academic Press, The Netherlands, 2001), pp. 305-320. [CrossRef]
  6. D. C. Allan, N. F. Borrelli, M. T. Gallagher, D. Müller, C. M. Smith, N. Venkataraman, J. A. West, P. Zhang, K.W. Koch, �??Surface modes and loss in air-core photonic bandgap fibers,�?? in Photonic Crystal Materials and Devices, Ali Adibi, Axel Scherer, and Shawn Yu Lin;, eds. Proc. SPIE 5000, p. 161-174 (2003).
  7. J. D. Joannopoulos, R. D. Meade and J. N. Winn, Photonic Crystals (Princeton University Press, Princeton, N.J., 1995), pp. 73-76.
  8. P. Yeh, Optical Waves in Layered Media, (John Wiley & Sons, New York, N.Y., 1988) pp. 337-345.
  9. D. C. Allan, N.F. Borrelli, J. C. Fajardo, K. W. Koch, and J. A. West. Corning Incorporated �??Optimized defects in band-gap waveguides,�?? U.S. Pat. Appl. 20020136516-A1. February 4 2002.
  10. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, �??Perturbation theory for Maxwell�??s equations with shifting material boundaries,�?? Phys. Rev. E 65, 66611 (2002). [CrossRef]
  11. M. Skorobogatiy, S. A. Jacobs, S. G. Johnson, and Y. Fink, �??Geometric variations in high index-contrast waveguides, coupled mode theory in curvilinear coordinates,�?? Opt. Express 10, 1227-1243 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-21-1227">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-21-1227</a>. [CrossRef] [PubMed]
  12. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer Academic Publishers, Boston, MA, 2000), Eq. 31-50a.
  13. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173-190 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a>. [CrossRef] [PubMed]
  14. B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea and H. Sabert, �??Low loss (1.7 dB/km) hollow core photonic bandgap fiber,�?? Proceedings of OFC 2004, (OSA, Los Angeles, CA, 2004) PDP24.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (758 KB)     
» Media 2: MOV (964 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited