OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 8 — Apr. 19, 2004
  • pp: 1518–1527

Optical bistability and cutoff solitons in photonic bandgap fibers

Marin Soljacic, Elefterios Lidorikis, Mihai Ibanescu, Steven G. Johnson, J.D. Joannopoulos, and Yoel Fink  »View Author Affiliations

Optics Express, Vol. 12, Issue 8, pp. 1518-1527 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (709 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present detailed theoretical and numerical analysis of certain novel non-linear optical phenomena enabled by photonic bandgap fibers. In particular, we demonstrate the feasibility of optical bistability in an axially modulated nonlinear photonic bandgap fiber through analytical theory and detailed numerical experiments. At 1.55µm carrier wavelength, the in-fiber devices we propose can operate with only a few tens of mW of power, have a nearly instantaneous response and recovery time, and be shorter than 100µm. Furthermore, we predict existence of gap-like solitons (which have thus-far been described only in axially periodic systems) in axially uniform photonic bandgap fibers.

© 2004 Optical Society of America

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.1450) Nonlinear optics : Bistability
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(230.4320) Optical devices : Nonlinear optical devices

ToC Category:
Focus Issue: Photonic crystals and holey fibers

Original Manuscript: February 19, 2004
Revised Manuscript: March 24, 2004
Manuscript Accepted: March 24, 2004

Marin Soljačić, Elefterios Lidorikis, Mihai Ibanescu, Steven G. Johnson, J.D. Joannopoulos, and Yoel Fink, "Optical bistability and cutoff solitons in photonic bandgap fibers," Opt. Express 12, 1518-1527 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003). [CrossRef] [PubMed]
  2. Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave. Technol. 17, 2039–2041, (1999). [CrossRef]
  3. Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, J. D. Joannopoulos, and Yoel Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748–779, (2001). [CrossRef] [PubMed]
  4. S.D. Hart, G.R. Maskaly, B. Temelkuran, P.H. Prideaux, J.D. Joannopoulos, and Y. Fink, “External Reflection from Omnidirectional Dielectric Mirror Fibers,” Science 296, 510–513, (2002). [CrossRef] [PubMed]
  5. B. Temelkuran, S.D. Hart, G. Benoit, J.D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653, (2002). [CrossRef] [PubMed]
  6. B.E.A. Saleh and M.C. Teich, Fundamentals Of Photonics (John Wiley&Sons, 1991). [CrossRef]
  7. Marin Soljačić, Mihai Ibanescu, Steven G. Johnson, Yoel Fink, and J.D. Joannopoulos, “Optimal Bistable Switching in Non-Linear Photonic Crystals,” Phys. Rev. E 66, 055601(R) (2002). [CrossRef]
  8. J.S. Foresi, P.R. Villeneuve, J. Ferrera, E.R. Thoen, G. Steinmeyer, S. Fan, J.D. Joannopoulos, L.C. Kimerling, H.I. Smith, and E.P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145, (1997). [CrossRef]
  9. Marin Soljačić, Mihai Ibanescu, Steven G. Johnson, J.D. Joannopoulos, and Yoel: Fink“Optical Bistability in Axially Modulated OmniGuide Fibers,” Opt. Lett. 28, 516–518, (2003). [CrossRef]
  10. Steven G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190, (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173. [CrossRef] [PubMed]
  11. For a review, see A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1995).
  12. H.A. Haus, Waves And Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, NJ, 1984).
  13. S.G. Johnson, S. Fan, A. Mekis, and J.D. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap,” Appl. Phys. Lett. 78, 3388–3390, (2001). [CrossRef]
  14. G. Lenz, J. Zimmerman, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S.-W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25, 254–256, (2000). [CrossRef]
  15. Jeffrey M. Harbold, F. Ömer Ilday, Frank W. Wise, and Bruce G. Aitken, “Highly Nonlinear Ge-As-Se and Ge-As-S-Se Glasses for All-Optical Switching,” IEEE Photon. Technol. Lett. 14, 822–824, (2002). [CrossRef]
  16. S. Coen and M. Haelterman, “Competition between modulational instability and switching in optical bistability,” Opt. Lett. 24, 80–82, (1999). [CrossRef]
  17. Stojan Radić, Nicholas George, and Govind P. Agrawal, “Theory of low-threshold optical switching in nonlinear phase-shifted periodic structures,” J. Opt. Soc. Am. B 12, 671–680, (1995). [CrossRef]
  18. J.E. Heebner and R. Boyd, “Enhanced all-optical switching by use of a nonlinear fiber ring resonator,” Opt. Lett. 24, 847–849, (1999). [CrossRef]
  19. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14, 483–485, (2002). [CrossRef]
  20. C. Kerbage and B.J. Eggleton, “Microstructured Optical Fibers,” Optics&Photonics News 38–42, (September 2002).
  21. H.G. Winful, J.H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381, (1979). [CrossRef]
  22. Wei Chen and D.L. Mills, “Gap solitons and the nonlinear optical response of superlattices,” Phys. Rev. Lett. 58, 160–163, (1987). [CrossRef] [PubMed]
  23. C. Martijn de Sterke and J.E. Sipe, “Envelope-function approach for the electrodynamics of nonlinear periodic structures,” Phys. Rev. A 38, 5149–5165, (1988). [CrossRef]
  24. D.N. Christodoulides and R.I Joseph, “Slow Bragg solitons in nonlinear periodic structures,” Phys. Rev. Lett. 62, 1746–1749, (1989). [CrossRef] [PubMed]
  25. C. Martijn de Sterke and J.E. Sipe, “Switching dynamics of finite periodic nonlinear media: A numerical study,” Phys. Rev. A 42, 2858–2869, (1990). [CrossRef]
  26. B.J. Eggleton, C. Martijn de Sterke, and R.E. Slusher, “Nonlinear pulse propagation in Bragg gratings,” J. Opt. Soc. Am. B 14, 2980–2993, (1997). [CrossRef]
  27. D. Taverner, N.G.R. Broderick, D.J. Richardson, R.I. Laming, and M. Ibsen, “Nonlinear self-switching and multiple gap-soliton formation in a fiber Bragg grating,” Opt. Lett. 23, 328–330, (1998). [CrossRef]
  28. S. Janz, J. He, Z.R. Wasilewski, and M. Cada, “Low threshold optical bistable switching in an asymmetric ¼-shifted distributed-feedback heterostructure,” Appl. Phys. Lett. 67, 1051–1053, (1995). [CrossRef]
  29. Elefterios Lidorikis, Marin Soljacic, Mihai Ibanescu, Yoel Fink, and J.D. Joannopoulos, “Gap solitons and optical switching in axially uniform systems,” Opt. Lett., in press.
  30. R.F. Gregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.St.J. Russell, P.J. Roberts, and D.C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285, 1537–1539, (1999). [CrossRef]
  31. This special kind of modal cutoff is different from the ones found in many simple waveguiding systems which appear very close to the light line (k≠0) and thus are very lossy (no fedback) and do not have zero group velocity solutions.
  32. E. Lidorikis, K. Busch, Qiming Li, C.T. Chan, and C.M. Soukoulis, “Optical nonlinear response of a single nonlinear dielectric layer sandwiched between two linear dielectric structures,” Phys. Rev. B 56, 15090–15099, (1997). [CrossRef]
  33. G. P. Agrawal, Nonlinear fiber optics (Academic Press, London, UK, 1995); Applications of nonlinear fiber optics (Academic Press, London, UK, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited