OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 8 — Apr. 19, 2004
  • pp: 1528–1539

New slant on photonic crystal fibers

Hong C. Nguyen, Peter Domachuk, Benjamin J. Eggleton, Michael J. Steel, Martin Straub, Min Gu, and Mikhail Sumetsky  »View Author Affiliations

Optics Express, Vol. 12, Issue 8, pp. 1528-1539 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (1863 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the novel use of microstructured optical fibers not as “light-pipes”, but in a transverse geometry to manipulate the light propagating across the fiber. Fundamental and higher-order bandgaps were observed experimentally in this geometry using a number of techniques. The comparison of the measured spectra with photonic band structure and Finite-Difference Time-Domain simulations provide strong evidence that the spectral features are a result of the periodic nature of the fiber microstructure in the transverse direction.

© 2004 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(060.2340) Fiber optics and optical communications : Fiber optics components

ToC Category:
Focus Issue: Photonic crystals and holey fibers

Original Manuscript: January 15, 2004
Revised Manuscript: February 21, 2004
Published: April 19, 2004

Hong Nguyen, Peter Domachuk, Benjamin Eggleton, Michael Steel, Martin Straub, Min Gu, and Mikhail Sumetsky, "A new slant on photonic crystal fibers," Opt. Express 12, 1528-1539 (2004)

Sort:  Journal  |  Reset  


  1. S. John, "Strong Localization of Photons in Certain Disordered Dielectric Superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  2. E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  3. J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals: Molding the Flow of Light. (Princeton University Press, 1995).
  4. S.Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzycki, S.R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998). [CrossRef]
  5. A. Mekis, J.C. Chen, I. Kurland, S.H. Fan, P.R. Villeneuve, and J.D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996). [CrossRef] [PubMed]
  6. P.V. Braun and P. Wiltzius, "Microporous materials - Electrochemically grown photonic crystals," Nature 402, 603-604 (1999). [CrossRef]
  7. S.Y. Lin, J.G. Fleming, and E. Chow, "Two- and three-dimensional photonic crystals built with VLSI tools," MRS Bull. 26, 627-631 (2001). [CrossRef]
  8. O. Toader and S. John, "Square spiral photonic crystals: Robust architecture for microfabrication of materials with large three-dimensional photonic band gaps," Phys. Rev. E 66, (2002). [CrossRef]
  9. V.L. Colvin, "From opals to optics: Colloidal photonic crystals," MRS Bull. 26, 637-641 (2001). [CrossRef]
  10. M. Straub and M. Gu, "Near-infrared photonic crystals with higher-order bandgaps generated by twophoton photopolymerization," Opt. Lett. 27, 1824-1826 (2002). [CrossRef]
  11. M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, and A.J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000). [CrossRef] [PubMed]
  12. S. Shoji and S. Kawata, "Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin," Appl. Phys. Lett. 76, 2668-2670 (2000). [CrossRef]
  13. A. Rosenberg, R.J. Tonucci, H.B. Lin, and E.L. Shirley, "Photonic-band-structure effects for low-index-contrast two-dimensional lattices in the near-infrared," Phys. Rev. B 54, R5195-R5198 (1996). [CrossRef]
  14. A. Rosenberg, R.J. Tonucci, H.B. Lin, and A.J. Campillo, "Near-infrared two-dimensional photonic bandgap materials," Opt. Lett. 21, 830-832 (1996). [CrossRef] [PubMed]
  15. P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003). [CrossRef] [PubMed]
  16. T.A. Birks, J.C. Knight, and P.S. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  17. J.C. Knight, T.A. Birks, R.F. Cregan, P.S. Russell, and J.P. de Sandro, "Large mode area photonic crystal fibre," Electron. Lett. 34, 1347-1348 (1998). [CrossRef]
  18. C. Knight, J. Arriaga, T.A. Birks, A. Ortigosa-Blanch, W.J. Wadsworth, and P.S. Russell, "Anomalous dispersion in photonic crystal fiber," IEEE Photonics Technol. Lett. 12, 807-809 (2000). [CrossRef]
  19. N.G.R. Broderick, T.M. Monro, P.T. Bennett, and D.T. Richardson, "Nonlinearity in holey optical fibers: measurement and future opportunities," Opt. Lett. (USA) vol.24, no.20, 1395-1397 (1999). [CrossRef]
  20. P. Mach, M. Dolinski, K.W. Baldwin, J.A. Rogers, C. Kerbage, R.S. Windeler, and B.J. Eggleton, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002). [CrossRef]
  21. J.C. Knight, J. Broeng, T.A. Birks, and P.S.J. Russel, "Photonic band gap guidance in optical fibers," Science 282, 1476-1478 (1998). [CrossRef] [PubMed]
  22. R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.S. Russell, P.J. Roberts, and D.C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999). [CrossRef] [PubMed]
  23. J.C. Knight, T.A. Birks, P.S.J. Russell, and J.G. Rarity, "Bragg scattering from an obliquely illuminated photonic crystal fiber," Appl. Optics 37, 449-452 (1998). [CrossRef]
  24. H.C. Nguyen, P. Domachuk, M. Sumetsky, M.J. Steel, M. Straub, M. Gu, and B.J. Eggleton. "Lateral thinking with photonic crystal fibers" in Postdeadline paper at IEEE Lasers and Electro-Optics Society Meeting (Tucson, Arizona, 2003)
  25. BandSOLVE�?� 1.2.0.(RSoft Design Group, Inc.), 2003
  26. K. Sakoda, "Symmetry, Degeneracy, and Uncoupled Modes in 2-Dimensional Photonic Lattices," Phys. Rev. B 52, 7982-7986 (1995). [CrossRef]
  27. S. Rowson, A. Chelnokov, C. Cuisin, and J.M. Lourtioz, "Two-dimensional photonic bandgap reflectors for free-propagating beams in the mid-infrared," J. Opt. A-Pure Appl. Opt. 1, 483-489 (1999). [CrossRef]
  28. FullWAVE�?� 3.0.1.(RSoft Design Group, Inc.), 2003
  29. J.C. Knight, T.A. Birks, P.S. Russell, and D.M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996). [CrossRef] [PubMed]
  30. A. Argyros, I.M. Bassett, M.A. van Eijkelenborg, M.C.J. Large, J. Zagari, N.A.P. Nicorovici, R.C. McPhedran, and C.M. de Sterke, "Ring structures in microstructured polymer optical fibres," Opt. Express 9, 813-820 (2001), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-813">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-813</a> [CrossRef] [PubMed]
  31. F. Ladouceur, "Roughness, inhomogeneity, and integrated optics," J. Lightwave Technol. 15, 1020-1025 (1997). [CrossRef]
  32. P. Domachuk, H.C. Nguyen, B.J. Eggleton, M. Straub, M. Gu, "Microfluidic Tunable Tall MicroChip", App. Phys. Lett. in press, March 2004

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited