OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 8 — Apr. 19, 2004
  • pp: 1665–1670

Interactive application in holographic optical tweezers of a multi-plane Gerchberg-Saxton algorithm for three-dimensional light shaping

Gavin Sinclair, Jonathan Leach, Pamela Jordan, Graham Gibson, Eric Yao, Zsolt John Laczik, Miles J. Padgett, and Johannes Courtial  »View Author Affiliations


Optics Express, Vol. 12, Issue 8, pp. 1665-1670 (2004)
http://dx.doi.org/10.1364/OPEX.12.001665


View Full Text Article

Enhanced HTML    Acrobat PDF (1085 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Phase-hologram patterns that can shape the intensity distribution of a light beam in several planes simultaneously can be calculated with an iterative Gerchberg-Saxton algorithm [T. Haist et al., Opt. Commun. 140, 299 (1997)]. We apply this algorithm in holographic optical tweezers. This allows us to simultaneously trap several objects in individually controllable arbitrary 3-dimensional positions. We demonstrate the interactive use of our approach by trapping microscopic spheres and moving them into an arbitrary 3-dimensional configuration.

© 2004 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(090.1760) Holography : Computer holography
(090.2890) Holography : Holographic optical elements
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(230.4110) Optical devices : Modulators
(230.6120) Optical devices : Spatial light modulators

ToC Category:
Research Papers

History
Original Manuscript: February 25, 2004
Revised Manuscript: March 29, 2004
Published: April 19, 2004

Citation
Gavin Sinclair, Jonathan Leach, Pamela Jordan, Graham Gibson, Eric Yao, Zsolt Laczik, Miles Padgett, and Johannes Courtial, "Interactive application in holographic optical tweezers of a multi-plane Gerchberg-Saxton algorithm for three-dimensional light shaping," Opt. Express 12, 1665-1670 (2004)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-8-1665


Sort:  Journal  |  Reset  

References

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, �??Observation of a single-beam gradient force optical trap for dielectric particles,�?? Opt. Lett. 11, 288�??290 (1986). [CrossRef] [PubMed]
  2. D. G. Grier, �??A revolution in optical manipulation,�?? Nature 424, 810�??816 (2003). [CrossRef] [PubMed]
  3. A. Ashkin, J. M. Dziedzic, and T. Yamane, �??Optical trapping and manipulation of single cells using infrared-laser beams,�?? Nature 330, 769�??771 (1987). [CrossRef] [PubMed]
  4. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, �??Direct Observation of Transfer of Angular Momentum to Absorbtive Particles from a Laser Beam with a Phase Singularity,�?? Phys. Rev. Lett. 75, 826�??829 (1995). [CrossRef] [PubMed]
  5. A. Terray, J. Oakey, and D. W. M. Marr, �??Microfluidic control using colloidal devices,�?? Science 296, 1841�??1844 (2002). [CrossRef] [PubMed]
  6. T. Haist, M. Schönleber, and H. J. Tiziani, �??Computer-generated holograms from 3D-objects written on twisted-nematic liquid crystal displays,�?? Opt. Commun. 140, 299�??308 (1997). [CrossRef]
  7. J. Arlt and M. J. Padgett, �??Generation of a beam with a dark focus surrounded by regions of higher intensity: an optical bottle beam,�?? Opt. Lett. 25, 191�??193 (2000). [CrossRef]
  8. V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, �??Optically controlled three-dimensional rotation of microscopic objects,�?? Appl. Phys. Lett. 82, 829�??831 (2003). [CrossRef]
  9. J. E. Curtis, B. A. Koss, and D. G. Grier, �??Dynamic holographic optical tweezers,�?? Opt. Commun. 207, 169�??175 (2002). [CrossRef]
  10. J. E. Molloy and M. J. Padgett, �??Lights, action: optical tweezers,�?? Contemp. Phys. 43, 241�??258 (2002). [CrossRef]
  11. K. Visscher, G. J. Brakenhoff, and J. J. Kroll, �??Micromanipulation by multiple optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,�?? Cytometry 14, 105�??114 (1993). [CrossRef] [PubMed]
  12. J. E. Molloy, J. E. Burns, J. C. Sparrow, R. T. Tregear, J. Kendrick-Jones, and D. C. S. White, �??Single-molecule mechanics of heavy-meromyosin and S1 interacting with rabbit or drosophila actins using optical tweesers,�?? Biophys. J. 68, S298�??S305 (1995).
  13. T. Ota, S. Kawata, T. Sugiura, M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, �??Dynamic axial-position control of a laser-trapped particle by wave-front modification,�?? Opt. Lett. 28, 465�??467 (2003). [CrossRef] [PubMed]
  14. D. J. Cho, S. T. Thurman, J. T. Donner, and G. M. Morris, �??Characteristics of a 128�?128 liquid-crystal spatial light modulator for wave-front generation,�?? Opt. Lett. 23, 969�??971 (1998). [CrossRef]
  15. E. R. Dufresne and D. G. Grier, �??Optical tweezer arrays and optical substrates created with diffractive optics,�?? Rev. Sci. Instr. 69, 1974�??1977 (1998). [CrossRef]
  16. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, �??Optical particle trapping with computer-generated holograms written on a liquid-crystal display,�?? Opt. Lett. 24, 608�??610 (1999). [CrossRef]
  17. P. C. Mogensen and J. Glückstad, �??Dynamic array generation and pattern formation for optical tweezers,�?? Opt. Commun. 175, 75�??81 (2000). [CrossRef]
  18. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, �??Multi-functional optical tweezers using computer-generated holograms,�?? Opt. Commun. 185, 77�??82 (2000). [CrossRef]
  19. R. W. Gerchberg and W. O. Saxton, �??A practical algorithm for the determination of the phase from image and diffraction plane pictures,�?? Optik 35, 237�??246 (1972).
  20. V. Soifer, V. Kotlyar, and L. Doskolovich, Iterative Methods for Diffractive Optical Elements Computation (Taylor & Francis Ltd, London, 1997).
  21. B. Lin and N. C. Gallagher, �??Convergence of a spectrum shaping algorithm,�?? Appl. Opt. 13, 2470�??2471 (1974). [CrossRef]
  22. E. A. Sziklas and A. E. Siegman, �??Mode calculations in unstable resonators with flowing saturable gain. 2: Fast Fourier transform method,�?? Appl. Opt. 14, 1874�??1889 (1975). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

Supplementary Material


» Media 1: MPG (2134 KB)     
» Media 2: MPG (1590 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited