OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 8 — Apr. 19, 2004
  • pp: 1708–1719

High quality-factor whispering-gallery mode in the photonic crystal hexagonal disk cavity

Han-Youl Ryu, Masaya Notomi, Guk-Hyun Kim, and Yong-Hee Lee  »View Author Affiliations

Optics Express, Vol. 12, Issue 8, pp. 1708-1719 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (2583 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study whispering-gallery-like modes in photonic crystal air-bridge slab micro-cavities having H2 defects using finite-difference time-domain calculations. The defect geometry is optimized to increase the quality factor (Q) of the H2-cavity whispering-gallery mode (WGM). By symmetrically distributing 12 nearest neighbor holes around the defect and controlling size of holes, it is possible to drastically increase the Q of >105 while preserving effective mode volume of the order of the cubic wavelength in material. In addition, we investigate the effect of a dielectric circular post located around the center of the H2 cavity. This post can act as current and heat flow paths that promise electrically-pumped thermally-stable lasing operation. It is interesting to observe that the introduction of the post structure increases the Q of the WGM upto 4×105 and the high Q >105 is still maintained even with large post size. Although diffractive out-coupling through the post is increased, radiated power outside the post is suppressed, which leads to large enhancement of the Q of the H2-cavity WGM.

© 2004 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(230.5750) Optical devices : Resonators

ToC Category:
Research Papers

Original Manuscript: February 17, 2004
Revised Manuscript: April 5, 2004
Published: April 19, 2004

Han-Youl Ryu, Masaya Notomi, Guk-Hyun Kim, and Yong-Hee Lee, "High quality-factor whispering-gallery mode in the photonic crystal hexagonal disk cavity," Opt. Express 12, 1708-1719 (2004)

Sort:  Journal  |  Reset  


  1. H. Yokoyama, �??Physics and Device Application of Optical Microcavities,�?? Science 256, 66-70 (1992). [CrossRef] [PubMed]
  2. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O�??Brien, P. D. Dapkus, and I. Kim, �??Two-dimensional photonic band-gap defect mode laser,�?? Science 284, 1819-1821 (1999). [CrossRef] [PubMed]
  3. S. Noda, A. Chutinan, and M. Imada, �??Trapping and emission of photons by a single defect in a photonic bandgap structure,�?? Nature 407, 608-610 (2000). [CrossRef] [PubMed]
  4. H. Y. Ryu, H. G. Park, and Y. H. Lee, �??Two-Dimensional Photonic Crystal Semiconductor Lasers: Computational Design, Fabrication, and Characterization,�?? IEEE J. Sel. Top. Quantum Electron. 8, 891-908 (2002). [CrossRef]
  5. J. Gérard and B. Gayral, �??InAs quantum dots: artificial atoms for solid-state cavity-quantum electrodynamics,�?? Physica E 9, 131-139 (2001). [CrossRef]
  6. J. Vu�?kovi�?, M. Lon�?ar, H. Mabuchi, and A. Scherer, �??Design of photonic crystal microcavities for cavity QED,�?? Phys. Rev. E 65, 016608 (2001). [CrossRef]
  7. J. Vu�?kovi�?, M. Lon�?ar, H. Mabuchi, and A. Scherer, �??Optimization of the Q Factor in Photonic Crystal Microcavities,�?? IEEE J. Quantum Electron. 38, 850-856 (2002) [CrossRef]
  8. K. Srinivasan and O. Painter, �??Momentum space design of high-Q photonic crystal optical cavities,�?? Opt. Express 10, 670-684 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-670">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-670</a>; K. Srinivasan and O. Painter, �??Fourier space design of high-Q cavities in standard and compressed hexagonal lattice photonic crystals,�?? Opt. Express 11, 579-593 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-6-579">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-6-579</a>. [CrossRef] [PubMed]
  9. H. Y. Ryu, S. H. Kim, H. G. Park, J. K. Hwang, Y. H. Lee, and J. S. Kim, �??Square-lattice photonic bandgap single-cell laser operating in the lowest-order whispering gallery mode,�?? Appl. Phys. Lett. 80, 3883-3885 (2002). [CrossRef]
  10. H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, �??Characterization of Modified Single-Defect Two-Dimensional Photonic Crystal Lasers,�?? IEEE J. Quantum Electron. 38, 1353-1365 (2002). [CrossRef]
  11. H. Y. Ryu, J. K. Hwang, and Y. H. Lee, �??The Smallest Possible Whispering-Gallery-Like Mode in the Square Lattice Photonic-Crystal Slab Single-Defect Cavity,�?? IEEE J. Quantum Electron. 39, 314-322 (2003). [CrossRef]
  12. J. Vu�?kovi�? and Y. Yamamoto, �??Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot,�?? Appl. Phys. Lett. 82, 2374-2376 (2003). [CrossRef]
  13. H. Y. Ryu, M. Notomi, and Y. H. Lee, �??Very high quality-factor and small mode-volume hexapole modes in photonic crystal slab nano-cavities,�?? Appl. Phys. Lett. 83, 4294 (2003). [CrossRef]
  14. T. Baba, M. Fujita, A. Sakai, M. Kihara, R. Watanabe, �??Lasing Characteristics of GaInAsP-InP Strained Quantum-Well Microdisk Injection Lasers with Diameter of 2-10 m,�?? IEEE Photon. Technol. Lett. 9, 878-880 (1997). [CrossRef]
  15. C. Reese, B. Gayral, B. D. Gerardot, A. Imamoglu, P. M. Petroff, and E. Hu, �??High-Q photonic crystal microcavities fabricated in a thin GaAs membrane,�?? J. Vac. Sci. Technol. B 19, 2749-2752 (2001). [CrossRef]
  16. C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. V. d�??Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, �??Modal Analysis and Engineering on InPBased Two-Dimensional Photonic-Crystal Microlasers on a Si Wafer,�?? IEEE J. Quantum Electron. 39, 419- 425 (2003). [CrossRef]
  17. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, �??Whispering-gallery mode microdisk lasers,�?? Appl. Phys. Lett. 60, 289-291 (1991). [CrossRef]
  18. M. Fujita, A. Sakai, and T. Baba, �??Ultrasmall and Ultralow Threshold GaInAsP-InP Microdisk Injection Lasers: Design, Fabrication, Lasing Characteristics, and Spontaneous Emission Factor,�?? IEEE J. Sel. Top. Quantum Electron. 5, 673-681 (1999). [CrossRef]
  19. M. Cai, O. Painter, and K. J. Vahala, �??Observation of critical coupling in a fiber taper to a silicamicrosphere whispering-gallery mode system,�?? Phys. Rev. Lett. 85, 74-77 (2000). [CrossRef] [PubMed]
  20. A. F. J. Levi, S. L. McCall, S. J. Pearton, and R. A. Logan, �??Room temperature operation of submicrometer radius disk lasers,�?? Electron. Lett. 29, 1666-1667 (1993). [CrossRef]
  21. R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, �??Threshold characteristics of microdisk lasers,�?? Appl. Phys. Lett. 63, 1310-1312 (1993). [CrossRef]
  22. S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, �??Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap,�?? Appl. Phys. Lett. 78, 3388-3390 (2001). [CrossRef]
  23. K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, �??Ultralow Threshold and Single-Mode Lasing in Microgear Lasers and Its Fusion With Quasi-Periodic Photonic Crystals,�?? IEEE J. Sel. Top. Quantum Electron. 9, 1315-1360 (2003).
  24. H. Mabuchi and A. C. Doherty, �??Cavity Quantum Electrodynamics: Coherence in Context,�?? Science 298, 1372-1377 (2002). [CrossRef] [PubMed]
  25. H. G. Park, S. K. Kim, S. H. Kwon, G. H. Kim, S. H. Kim, H. Y. Ryu, and Y. H. Lee, �??Single-Mode Operation of Two-Dimensional Photonic Crystal Laser with Central Post,�?? IEEE Photon. Technol. Lett. 15, 1327 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: GIF (332 KB)     
» Media 2: GIF (89 KB)     
» Media 3: GIF (370 KB)     
» Media 4: GIF (336 KB)     
» Media 5: GIF (309 KB)     
» Media 6: GIF (295 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited