OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 8 — Apr. 19, 2004
  • pp: 1780–1787

Acrylamide-N,N’-methylenebisacrylamide silica glass holographic recording material

L. Carretero, A. Murciano, S. Blaya, M. Ulibarrena, and A. Fimia  »View Author Affiliations

Optics Express, Vol. 12, Issue 8, pp. 1780-1787 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (373 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we describe a photopolymerizable silica glass based on acrylamide (AA) and N,N’-methylenebisacrylamide (BMA) as monomers, triethanolamine (TEA) as coinitiator and yellowish eosin (YE) as photoinitiator. We studied different compositions, analyzing the diffraction efficiency, energetic exposure and effective thickness obtained in the holographic gratings. A diffraction efficiency of 60 % with an energetic exposure of 139 mJ/cm2 and an effective thickness of 1.1 mm were obtained. Also, by varying the photopolymerizable composition of the material diffraction efficiencies higher than 80 % can be reached with an energetic exposure of 10 mJ/cm2 and an effective thickness of 113 µm. These values are similar to those obtained in conventional photopolymer systems in polyvinylalcohol and better than the values reached in other sol-gel compositions. Also, 9 holograms were angular multiplexed with diffraction efficiencies between 6 and 12 % and total exposure time shorter than 150 ms, with a dynamic range M/#=2.4.

© 2004 Optical Society of America

OCIS Codes
(050.7330) Diffraction and gratings : Volume gratings
(090.0090) Holography : Holography
(090.2900) Holography : Optical storage materials

ToC Category:
Research Papers

Original Manuscript: March 22, 2004
Revised Manuscript: April 8, 2004
Published: April 19, 2004

L. Carretero, A. Murciano, S. Blaya, M. Ulibarrena, and A. Fimia, "Acrylamide-N,N'-methylenebisacrylamide silica glass holographic recording material," Opt. Express 12, 1780-1787 (2004)

Sort:  Journal  |  Reset  


  1. L. Dhar, K. R. Curtis, M. L. Schilling, M. Schnoes, M. Tackitt, S. Campbell, W. L. Wilson, and A. Hill, �??Digital holographic data storage in photopolymer systems,�?? in Advanced optical memories and interfaces to computer storage, vol. 3468, pp. 40�??42 (SPIE, San Diego, 1998)
  2. H. J. Coufal and G. T. Sincerbox, Holographic data storage (Springer, Berlin, 2000) [CrossRef]
  3. G. J. Steckman, V. Shelkovnikov, V. Berezhnaya, T. G. nd I. Solomatine, and D. Psaltis, �??Holographic recording in a photopolymer by optically induced detachment of chromophores,�?? Opt. Lett. 25, 607�??609 (2000) [CrossRef]
  4. D. A. Waldman, C. J. Butler, and D. H. Raguin, �??CROP holographic storage media for optical data storage at greater than 100 bits/ µm2,�?? in Organic Holographic Materials and Applications, vol. 5216 (SPIE, San Diego, 2003)
  5. S. Blaya, L. Carretero, R. F. Madrigal, and A. Fimia, �??Study of the optimization of a photopolymerizable holographic recording material based on polyvinylalcohol using angular responses,�?? Opt. Mater. 23, 529�??538 (2003) [CrossRef]
  6. S. Blaya, L. Carretero, R. Madrigal, and A. Fimia, �??Study of effect of bifunctional crosslinking agent in polyvinylalcohol-based photopolymerizable holographic recording material using angular responses,�?? Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 41, 3730�??3736 (2002).
  7. S. Blaya, R. Mallavia, L. Carretero, A. Fimia, and R. F. Madrigal, �??Highly sensitive photopolymerizable dry film for use in real time holography,�?? Appl. Phys. Lett. 73, 1628�??1630 (1998) [CrossRef]
  8. C. Garcia, A. Fimia, and I. Pascual, �??Holographic behavior of a photopolymer at high thicknesses and high monomer concentrations: mechanism of photopolymerization,�?? Appl. Phys. B 72, 311�??316 (2000) [CrossRef]
  9. S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, and A. Fimia, �??New photopolymerizable holographic recording material based on polyvinylalcohol and 2-hydroxiethylmethacrylate (HEMA),�?? Appl. Phys. B-Lasers Opt. 74, 603�??605 (2002) [CrossRef]
  10. P. Cheben, T. Belenguer, A. Nunez, F. del Monte, and D. Levy, �??Holographic diffraction gratings recording in organically modified silica gels,�?? Opt. Lett. 21, 1857�??1859 (1996) [CrossRef] [PubMed]
  11. P. Cheben and M. L. Calvo, �??A photopolymerizable glass with diffraction efficiency near 100 % for holographic storage,�?? Appl. Phys. Lett. 78, 1490�??1492 (2001) [CrossRef]
  12. G. Ramos, A. Alvarez-Herrero, T. Belenguer, D. Levy, and F. del Monte, �??Photopolymerizable hybrid sol-gel material for holographic recording,�?? in Organic holographic materials and applications, vol. 5216, pp. 116�??125, SPIE (SPIE, San Diego, 2003)
  13. C. Wang, Y. Zhang, Y. Lu, and Y. Wei, �??A novel bulk sol-gel process to prepare monolithic silica materials,�?? J. Mater. Res. 14, 4098�??4102 (1999) [CrossRef]
  14. S. Blaya, P. Acebal, L. Carretero, and A. Fimia, �??Pyrromethene-HEMA-based photopolymerizable holographic recording material,�?? Opt. Commun. 228, 55�??61 (2003) [CrossRef]
  15. S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, �??Photopolymerization model for holographic gratings formation in photopolymers,�?? Appl. Phys. B-Lasers Opt. 77, 639�??662 (2003) [CrossRef]
  16. S. Blaya, A. Murciano, P. Acebal, L. Carretero, M. Ulibarrena, and A. Fimia, �??Diffraction gratings and diffusion coefficient determination of acrylamide and polyacrylami de in sol-gel glass.�?? Appl. Phys. Lett. Submitted (2004) [CrossRef]
  17. S. Blaya, L. Carretero, A. Fimia, R. Mallavia, R. F. Madrigal, R. Sastre, and F. Amat-Guerri, �??Optimal composition of an acrylamide and N,N�??-methylenebisacrylamide holographic recording material,�?? J. Mod. Opt. 45, 2573�??2584 (1998)
  18. T. Kubota, �??The bending of interference fringes inside a hologram,�?? Optica Acta 26, 731�??743 (1979) [CrossRef]
  19. N. Uchida, �??Calculation of diffraction efficiency in hologram gratings attenuated along the direction perpendicular to the grating vector,�?? J. Opt. Soc. Am 63, 280�??287 (1973) [CrossRef]
  20. L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, and A. Fimia, �??A theoretical model for noise gratings recorded in acrylamide photopolymer materials used in real-time holography,�?? J. Mod. Opt. 45, 2345�??2354 (1998) [CrossRef]
  21. H. Kogelnik, �??Coupled wave theory for thick hologram gratings,�?? Bell. Sys. Tech. J. 48, 2909�??2945 (1969)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited