OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 9 — May. 3, 2004
  • pp: 1832–1842

In-situ visualization, monitoring and analysis of electric field domain reversal process in ferroelectric crystals by digital holography

Simonetta Grilli, Pietro Ferraro, Melania Paturzo, Domenico Alfieri, Paolo De Natale, Marella de Angelis, Sergio De Nicola, Andrea Finizio, and Giovanni Pierattini  »View Author Affiliations


Optics Express, Vol. 12, Issue 9, pp. 1832-1842 (2004)
http://dx.doi.org/10.1364/OPEX.12.001832


View Full Text Article

Enhanced HTML    Acrobat PDF (909 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In-situ monitoring of domain reversal in congruent lithium niobate by a digital holographic technique is described. While the ferroelectric polarization is reversed by electric field poling, the two-dimensional distribution of the phase shift, due mainly to the linear electro-optic and piezoelectric effects, is measured and visualized. Digital holography is used to reconstruct both amplitude and phase of the wavefield transmitted by the sample to reveal the phase shift induced by adjacent reversed domains during the poling. The resulting movies of both amplitude and phase maps, for in-situ visualization of domain pattern formation, are shown. The possibility of using the technique as tool for monitoring in real-time the periodic poling of patterned samples is discussed.

© 2004 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(160.2100) Materials : Electro-optical materials
(160.3730) Materials : Lithium niobate

ToC Category:
Research Papers

History
Original Manuscript: March 17, 2004
Revised Manuscript: April 9, 2004
Published: May 3, 2004

Citation
Simonetta Grilli, Pietro Ferraro, Melania Paturzo, Domenico Alfieri, Paolo De Natale, Marella de Angelis, Sergio De Nicola, Andrea Finizio, and Giovanni Pierattini, "In-situ visualization, monitoring and analysis of electric field domain reversal process in ferroelectric crystals by digital holography," Opt. Express 12, 1832-1842 (2004)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-9-1832


Sort:  Journal  |  Reset  

References

  1. R.L. Byer, �??Nonlinear Optics and Solid-State Lasers:2000,�?? IEEE J. Select. Topics Quantum Electron. 6, 911-930 (2000). [CrossRef]
  2. D. Mazzotti, P. De Natale, G. Giusfredi, C. Fort, J. A. Mitchell, L. Hollberg, �??Saturated-absorption spectroscopy with low-power difference-frequency radiation,�?? Opt. Lett. 25, 350-352 (2000). [CrossRef]
  3. N.G.R. Broderick, G.W. Ross, H.L. Offerhaus, D.J. Richardson and D.C. Hanna, �??Hexagonally Poled Lithium Niobate: A Two-Dimensional Nonlinear Photonic Crystal,�?? Phys. Rev. Lett. 84, 4345-4348 (2000). [CrossRef] [PubMed]
  4. S.J. Holmgren, V. Pasiskevicius, S. Wang and F. Laurell, �??Three-dimensional characterization of the effective second-order nonlinearity in periodically poled crystals,�?? Opt. Lett. 28, 1555-1557 (2003). [CrossRef] [PubMed]
  5. M. Yamada, N. Nada, M. Saitoh, K. Watanabe, �??First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,�?? Appl. Phys. Lett. 62, 435-436 (1993). [CrossRef]
  6. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, P. De Natale and M. Chiarini, �??Investigation on reversed domain structures in Lithium Niobate crystals patterned by Interference Lithography,�?? Opt. Express 11, 392-405 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-4-392">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-4-392</a> [CrossRef] [PubMed]
  7. M.J. Missey, S. Russell, V. Dominic, R.G. Batchko, K.L. Schepler, �??Real-time visualization of domain formation in periodically poled lithium niobate,�?? Opt. Express 6, 186-195 (2000). [CrossRef] [PubMed]
  8. V. Gopalan and T.E. Mitchell, �??Wall velocities, switching times, and the stabilization mechanism of 180° domains in congruent LiTaO3 crystals,�?? J. Appl. Phys. 83, 941-954 (1998). [CrossRef]
  9. K. Nassau, H.J. Levinstein and G.M. Loiacono, �??Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching,�?? J. Phys. Chem. Solids 27, 983-988 (1966). [CrossRef]
  10. V. Gopalan and M.C. Gupta, �??Origin of internal field and visualization of 180° domains in congruent LiTaO3 crystals,�?? J. Appl. Phys. 80, 6099-6106 (1996). [CrossRef]
  11. M. Flörsheimer, R. Paschotta, U. Kubitscheck, Ch. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, H. Fuchs, �??Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions, �?? Appl. Phys. B 67, 593-599 (1998). [CrossRef]
  12. T.J. Yang, V. Gopalan, P.J. Swart and U. Mohideen, �??Direct Observation of Pinning and Bowing of a Single Ferroelectric Domain Wall,�?? Phys. Rev. Lett. 82, 4106-4109 (1999). [CrossRef]
  13. J. Wittborn, C. Canalias, K. V. Rao, R. Clemens, H. Karlsson and F. Laurell, �??Nanoscale imaging of domains and domain walls in periodically poled ferroelectrics using atomic force microscopy,�?? Appl. Phys. Lett. 80, 1622-1624 (2002). [CrossRef]
  14. M.C. Wengler, M. Müller, E. Soergel, K. Buse, �??Poling dynamics of lithium niobate crystals,�?? Appl. Phys. B 76, 393-396 (2003). [CrossRef]
  15. V. Gopalan, S.S.A. Gerstl, A. Itagi, T.E. Mitchell, Q.X. Jia, T.E. Schlesinger and D.D. Stancil, �??Mobility of 180° domain walls in congruent LiTaO3 measured using real-time electro-optic imaging microscopy,�?? J. Appl. Phys. 86, 1638-1646 (1999). [CrossRef]
  16. V. Gopalan, T.E. Mitchell, �??In situ video observation of 180° domain switching in LiTaO3 by electro-optic imaging microscopy,�?? J. Appl. Phys. 85, 2304-2311 (1999). [CrossRef]
  17. V. Goapalan, Q.X.Jia, T.E. Mitchell, �??In situ observation of 180° domain kinetics in congruent LiNbO3 crystals,�?? Appl. Phys. Lett. 75, 2482-2484 (1999). [CrossRef]
  18. S. Kim, V. Gopalan, K. Kitamura and Y. Furukawa, �??Domain reversal and nonstoichiometry in lithium tantalate,�?? J. Appl. Phys. 90, 2949-2963 (2001). [CrossRef]
  19. M. Müller, E. Soergel, and K. Buse, �??Visualization of ferroelectric domains with coherent light,�?? Opt. Lett. 28, 2515-2517 (2003). [CrossRef] [PubMed]
  20. U.Schanrs and W. Jüptner �??Digital recording and numerical reconstruction of holograms,�?? Meas. Sci. Tech. 13, R85-R101 (2002). [CrossRef]
  21. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini and R. Meucci, �??Whole optical wavefields reconstruction by digital holography,�?? Opt. Expr. 9, 294-302 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-6-294">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-6-294</a> [CrossRef]
  22. S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, �??Correct-image reconstruction in the presence of severe anamorphism by means of digital holography,�?? Opt. Lett. 26, 974-976 (2001). [CrossRef]
  23. S. De Nicola, P. Ferraro, A. Finizio and G. Pierattini, �??Reflective grating interferometer: a folded reversal wave-front interferometer,�?? Appl. Opt. 38, 4845-4849 (1999). [CrossRef]
  24. M. Jazbinšek, M. Zgonik, �??Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics,�?? Appl. Phys. B 74, 407-414 (2002). [CrossRef]
  25. D.J. Whitehouse, �??Review article: surface metrology,�?? Meas. Sci. Technol. 8, 955-972 (1997). [CrossRef]
  26. S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, �??Wave front reconstruction of Fresnel off-axis holograms with compensation of aberrations by means of phase-shifting digital holography,�?? Opt. Las. Eng. 37, 331-340 (2002). [CrossRef]
  27. P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, G. Pierattini, �??Controlling image size as a function of distance and wavelength in Fresnel transform reconstruction of digital holograms,�?? Opt. Lett., (to be published).
  28. P. Ferraro, S. de Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, �??Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,�?? Appl. Opt. 42, 1938-1946 (2003). [CrossRef] [PubMed]
  29. V. Gopalan and M.C. Gupta, �??Observation of internal field in LiTaO3 single crystals: Its origin and time-temperature dependence,�?? Appl. Phys. Lett. 68, 888-890 (1996). [CrossRef]
  30. T.J. Yang, U. Mohideen, M.C. Gupta, �??Near-field scanning optical microscopy of ferroelectric domain walls,�?? Appl. Phys. Lett. 71, 1960-1962 (1997). [CrossRef]
  31. T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, �??Polarization imaging by use of digital holography,�?? Appl. Opt. 41, 27-37 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (2374 KB)     
» Media 2: MOV (1079 KB)     
» Media 3: MOV (2319 KB)     
» Media 4: MOV (2241 KB)     
» Media 5: MOV (1028 KB)     
» Media 6: MOV (2343 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited