OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 9 — May. 3, 2004
  • pp: 1938–1958

Simultaneous nonlinearity suppression and wide-band dispersion compensation using optical phase conjugation

Haiqing Wei and David V. Plant  »View Author Affiliations


Optics Express, Vol. 12, Issue 9, pp. 1938-1958 (2004)
http://dx.doi.org/10.1364/OPEX.12.001938


View Full Text Article

Enhanced HTML    Acrobat PDF (267 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical phase conjugation is demonstrated to enable simultaneous wide-band compensation of the residual dispersion and the fiber nonlinearities in dispersion-managed fiber transmission lines employing slope-compensating fibers. When the dispersion slope of transmission fibers is equalized by slope-compensating fibers, the residual dispersion and the slope of dispersion slope are compensated by middle-span optical phase conjugation. More importantly, fiber nonlinearity may be largely suppressed by arranging the fibers into conjugate pairs about the phase conjugator, where the two fibers of each pair are in scaled translational symmetry. The translational symmetry is responsible for cancelling optical nonlinearities of the two fibers up to the first-order perturbation, then a mirror-symmetric ordering of the fiber pairs about the conjugator linearizes a long transmission line effectively.

© 2004 Optical Society of America

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers

ToC Category:
Research Papers

History
Original Manuscript: February 12, 2004
Revised Manuscript: April 12, 2004
Published: May 3, 2004

Citation
Haiqing Wei and David Plant, "Simultaneous nonlinearity suppression and wide-band dispersion compensation using optical phase conjugation," Opt. Express 12, 1938-1958 (2004)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-9-1938


Sort:  Journal  |  Reset  

References

  1. A. H. Gnauck and R. M. Jopson, �??Dispersion compensation for optical fiber systems,�?? in Optical Fiber Telecommunications III A, I. P. Kaminow and T. L. Koch, eds. (Academic Press, San Diego, 1997).
  2. F. Forghieri, R. W. Tkach and A. R. Chraplyvy, �??Fiber nonlinearities and their impact on transmission systems,�?? in Optical Fiber Telecommunications III A, I. P. Kaminow and T. L. Koch, eds. (Academic Press, San Diego, 1997).
  3. V. Srikant, �??Broadband dispersion and dispersion slope compensation in high bit rate and ultra long haul systems,�?? OFC 2001, paper TuH1.
  4. M. J. Li, �??Recent progress in fiber dispersion compensators,�?? European Conference on Optical Communication 2001, paper Th.M.1.1.
  5. S. N. Knudsen and T. Veng, �??Large effective area dispersion compensating fiber for cabled compensation of standard single mode fiber,�?? OFC 2000, paper TuG5.
  6. Q. L. N.T., T. Veng, and L. Gruner-Nielsen, �??New dispersion compensating module for compensation of dispersion and dispersion slope of non-zero dispersion fibres in the C-band,�?? OFC 2001, paper TuH5.
  7. K. Mukasa, H. Moridaira, T. Yagi, and K. Kokura, �??New type of dispersion management transmission line with MDFSD for long-haul 40 Gb/s transmission,�?? OFC 2002, paper ThGG2.
  8. M. Gorlier, P. Sillard, F. Beaumont, L.-A. de Montmorillon, L. Fleury, Ph. Guenot, A. Bertaina, and P. Nouchi, �??Optimized NZDSF-based link for wide-band seamless terrestrial transmissions,�?? OFC 2002, paper ThGG7.
  9. A. Yariv, D. Fekete, and D. M. Pepper, �??Compensation for channel dispersion by nonlinear optical phase conjugation,�?? Opt. Lett. 4, 52-54 (1979). [CrossRef] [PubMed]
  10. D. M. Pepper and A. Yariv, �??Compensation for phase distortions in nonlinear media by phase conjugation,�?? Opt. Lett. 5, 59-60 (1980). [CrossRef] [PubMed]
  11. S. Watanabe and M. Shirasaki, �??Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation,�?? J. Lightwave Technol. 14, 243-248 (1996). [CrossRef]
  12. I. Brener, B. Mikkelsen, K. Rottwitt, W. Burkett, G. Raybon, J. B. Stark, K. Parameswaran, M. H. Chou, M. M. Fejer, E. E. Chaban, R. Harel, D. L. Philen, and S. Kosinski, �??Cancellation of all Kerr nonlinearities in long fiber spans using a LiNbO3 phase conjugator and Raman amplification,�?? OFC 2000, paper PD33.
  13. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, �??1.5- µm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,�?? IEEE Photon. Technol. Lett. 11, 653-655 (1999). [CrossRef]
  14. S. Radic, R. M. Jopson, C. J. McKinstrie, A. H. Gnauck, S. Chandrasekhar, and J. C. Centanni, �??Wavelength division multiplexed transmission over standard single mode fiber using polarization insensitive signal conjugation in highly nonlinear optical fiber,�?? OFC 2003, paper PD12.
  15. H.Wei and D. V. Plant, �??On the capacity of nonlinear fiber channels,�?? arXiv:physics/0307020 at, <a href= " http://arxiv.org/">http://arxiv.org</a>
  16. H. Wei and D. V. Plant, �??Two means of compensating fiber nonlinearity using optical phase conjugation arXiv:physics/03070202 at <a href="http://arxiv.org/">http://arxiv.org/<a>
  17. H.Wei and D. V. Plant, �??Fundamental equations of nonlinear fiber optics,�?? in Optical Modeling and Performance Predictions, M. A. Kahan, ed., Proc. SPIE 5178, 255-266 (2003).
  18. K. Rottwitt and A. J. Stentz, �??Raman amplification in lightwave communication systems,�?? in Optical Fiber Telecommunications IV A: Components, I. P. Kaminow and T. Li, eds. (Academic Press, San Diego, 2002).
  19. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (John Wiley & Sons, New York, 1994).
  20. M. Vasilyev, B. Szalabofka, S. Tsuda, J. M. Grochocinski, and A. F. Evans, �??Reduction of Raman MPI and noise figure in dispersion-managed fiber,�?? Electron. Lett. 38, no. 6, 271-272 (2002). [CrossRef]
  21. J.-C. Bouteiller, K. Brar, and C. Headley, �??Quasi-constant signal power transmission,�?? European Conference on Optical Communication 2002, paper S3.04.
  22. M. Vasilyev, �??Raman-assisted transmission: toward ideal distributed amplification,�?? OFC 2003, paper WB1.
  23. M. E. Marhic, N. Kagi, T.-K. Chiang, and L. G. Kazovsky, �??Cancellation of third-order nonlinear effects in amplified fiber links by dispersion compensation, phase conjugation, and alternating dispersion,�?? Opt. Lett. 20, no. 8, 863-865 (1995). [CrossRef] [PubMed]
  24. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University Press, 1997), Chapter 3.
  25. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, San Diego, 1995), Chapter 2.
  26. The use of βk�??s defined by Eq. (4) in the NLSE is connected to an approximation β2(w)-β2�?? 2β[β((w)-βо] with sacrificed accuracy. An alternative definition in Ref. [17] may be used for better accruacy.
  27. K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations (Springer-Verlag, New York, 2000).
  28. E. E. Narimanov and P. Mitra, �??The channel capacity of a fiber optics communication system: perturbation theory,�?? J. Lightwave Technol. 20, 530-537 (2002). [CrossRef]
  29. J. A. Buck, Fundamentals of Optical Fibers (Wiley, New York, 1995), Chapter 4.
  30. C. Rasmussen, T. Fjelde, J. Bennike, F. Liu, S. Dey, B. Mikkelsen, P. Mamyshev, P. Serbe, P. van der Wagt, Y. Akasaka, D. Harris, D. Gapontsev, V. Ivshin, P. Reeves-Hall, �??DWDM 40G transmission over trans-Pacific distance (10,000 km) using CSRZ-DPSK, enhanced FEC and all-Raman amplified 100 km UltraWaveTM fiber spans,�?? OFC 2003, paper PD18.
  31. L. Gruner-Nielsen, Y. Qian, B. Palsdottir, P. B. Gaarde, S. Dyrbol, T. Veng, and Y. Qian, �??Module for simultaneous C + L-band dispersion compensation and Raman amplification,�?? OFC 2002, paper TuJ6.
  32. T. Miyamoto, T. Tsuzaki, T. Okuno, M. Kakui, M. Hirano, M. Onishi, and M. Shigematsu, �??Raman amplification over 100 nm-bandwidth with dispersion and dispersion slope compensation for conventional single mode fiber,�?? OFC 2002, paper TuJ7.
  33. M. Eiselt, M. Shtaif, R. W. Tkach, F. A. Flood, S. Ten, and D. Butler, �??Cross-phase modulation in an L-band EDFA,�?? IEEE Photon. Technol. Lett. 11, 1575-1577 (1999). [CrossRef]
  34. H. S. Chung, S. K. Shin, D. W. Lee, D. W. Kim, and Y. C. Chung, �??640Gbit/s (32�?20Gbit/s) WDM transmission with 0.4(bit/s)/Hz spectral efficiency using short-period dispersion-managed fiber,�?? Elec. Lett. 37, 618-620 (2001). [CrossRef]
  35. R.-J. Essiambre, G. Raybon, and B. Mikkelson, �??Pseudo-linear transmission of high-speed TDM signals: 40 and 160 Gb/s,�?? in Optical Fiber Telecommunications IV B: Systems and Impairments, I. P. Kaminow and T. Li, eds. (Academic Press, San Diego, 2002).
  36. P. Kaewplung, T. Angkaew, and K. Kikuchi, �??Simultaneous suppression of third-order dispersion and sideband instability in single-channel optical fiber transmission by midway optical phase conjugation employing higher order dispersion management,�?? J. Lightwave Technol. 21, 1465-1473 (2003). [CrossRef]
  37. For example, a nearly perfect translational symmetry may be formed between Corning�??s LEAF, a +NZDSF with D�??4 ps/nm/km, S�??0.1 ps/nm2/km, and its Vascade LEAF, a -NZDSF with D�??-4 ps/nm/km, S�??0.1 ps/nm2/km in the C band. The fiber parameters are available at <a href="http://www.corning.com/opticalfiber">http://www.corning.com/opticalfiber<a>.
  38. F. Forghieri, R.W. Tkach, A. R. Chraplyvy, and D. Marcuse, �??Reduction of four-wave mixing crosstalk in WDM systems using unequally spaced channels,�?? IEEE Photon. Technol. Lett. 6, 754-756 (1994). [CrossRef]
  39. F. Forghieri, R. W. Tkach, and A. R. Chraplyvy, �??WDM systems with unequally spaced channels,�?? J. Lightwave Technol. 13, 889-897 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited