OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 1 — Jan. 10, 2005
  • pp: 148–163

Robust concentration determination of optically active molecules in turbid media with validated three-dimensional polarization sensitive Monte Carlo calculations

Daniel Côté and I. Alex Vitkin  »View Author Affiliations

Optics Express, Vol. 13, Issue 1, pp. 148-163 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (429 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The concentration determination of optically active species in moderately turbid suspensions is studied both experimentally and with a validated three-dimensional polarization-sensitive Monte Carlo model. It is shown that the orientation of the polarization of the scattered light exhibits a strong dependence on exit position in the side or backscattered directions, but not in the forward direction. In addition, it is shown that the increased path length of photons due to multiple scattering in a 1 cm cuvette filled with forward-peaked scatterers (anisotropy around 0.93) increases the optical rotation by up to 15%, but only for scattering coefficients under 30 cm-1, after which it decreases again. It is concluded that in order to avoid systematic errors in concentration determination of optically-active molecular species in turbid samples, the scattered light in the forward direction should be used.

© 2005 Optical Society of America

OCIS Codes
(110.7050) Imaging systems : Turbid media
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(170.5280) Medical optics and biotechnology : Photon migration

ToC Category:
Research Papers

Original Manuscript: October 12, 2004
Revised Manuscript: December 1, 2004
Manuscript Accepted: December 23, 2004
Published: January 10, 2005

Daniel Côté and I. Alex Vitkin, "Robust concentration determination of optically active molecules in turbid media with validated three-dimensional polarization sensitive Monte Carlo calculations," Opt. Express 13, 148-163 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M.  Schmitt, A. H.  Gandjbakhche, R. F.  Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt. 31, 6535–6546 (1992). [CrossRef] [PubMed]
  2. S. L.  Jacques, J. C.  Ramella-Roman, K.  Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002). [CrossRef] [PubMed]
  3. X.  Wang, G.  Yao, L. V.  Wang, “Monte Carlo model and single-scattering approximation of the propagation of polarized light in turbid media containing glucose,” Appl. Opt. 41, 792–801 (2002). [CrossRef] [PubMed]
  4. I. A.  Vitkin, E.  Hoskinson, “Polarization studies in multiply scattering chiral media,” Opt. Eng. 39, 353–362 (2000). [CrossRef]
  5. D.  Côté, I. A.  Vitkin, “Balanced detection for low-noise precision polarimetric measurements of optically active, multiply scattering tissue phantoms,” J. Biomed. Opt. 9, 213–220 (2004). [CrossRef] [PubMed]
  6. R. J.  McNichols, G. L.  Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5, 5–16 (2000). [CrossRef] [PubMed]
  7. D. R.  Lide, (ed.), CRC Handbook of Chemistry and Physics (CRC Press LLC, Boca Raton, Florida, 1998), pp. 3–12,8–64., 79th edn.
  8. W. F.  March, B.  Rabinovitch, R. L.  Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part II. Animal studies and the scleral lens,” Diabetes Care 5, 259–265 (1982). [CrossRef] [PubMed]
  9. B. D.  Cameron, G. L.  Coté, “Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach,” IEEE Trans. Biomed. Eng. 44, 1221–1227 (1997). [CrossRef] [PubMed]
  10. R. R.  Ansari, S.  Bockle, L.  Rovati, “New optical scheme for a polarimetric-based glucose sensor,” J. Biomed. Opt. 9, 103–115 (2004). [CrossRef] [PubMed]
  11. A. J.  Welch, G.  Yoon, M. J.  van Gemert, “Practical models for light distribution in laser-irradiated tissue,” Lasers Surg Med 6, 488–493 (1987). [CrossRef] [PubMed]
  12. M. S.  Patterson, B. C.  Wilson, D. R.  Wyman, “The propagation of optical radiation in tissue I. Models of radiation transport and their application,” Lasers in Medical Science 6, 155–166 (1990). [CrossRef]
  13. L.  Wang, S. L.  Jacques, L.  Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Biomed. 47, 131–146 (1995). [CrossRef]
  14. M.  Moscoso, J. B.  Keller, G.  Papanicolaou, “Depolarization and blurring of optical images by biological tissue,” J. Opt. Soc. Am. A 18, 948–960 (2001). [CrossRef]
  15. J. R.  Mourant, T. M.  Johnson, J. P.  Freyer, “Characterizing mammalian cells and cell phantoms by polarized backscattering fiber-optic measurements,” Appl. Opt. 40, 5114–5123 (2001). [CrossRef]
  16. F.  Jaillon, H.  Saint-Jalmes, “Description and time reduction of a Monte Carlo code to simulate propagation of polarized light through scattering media,” Appl. Opt. 42, 3290–3296 (2003). [CrossRef] [PubMed]
  17. S.  Bartel, A. H.  Hielscher, “Monte Carlo simulations of the diffuse backscattering Mueller matrix for highly scattering media,” Appl. Opt. 39, 1580–1588 (2000). [CrossRef]
  18. B.  Kaplan, G.  Ledanois, B.  Drévillon, “Mueller Matrix of dense polystyrene latex sphere supsensions: measurements and Monte Carlo simulations,” Appl. Opt. 40, 2769–2777 (2001). [CrossRef]
  19. M.  Mehrübeoglu, N.  Kehtarnavaz, S.  Rastegar, L. V.  Wang, “Effect of molecular concentrations in tissue-simulating phantoms on images obtained using diffuse reflectance polarimetry,” Opt. Express 3, 286–297 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-7-286. [CrossRef] [PubMed]
  20. D.  Côté, I. A.  Vitkin, “Pol-MC: a three-dimensional polarization-sensitive Monte Carlo implementation for light propagation in tissue,” Available at http://www.novajo.ca/ont-canc-inst-biophotonics/.
  21. T. A.  Germer, “SCATMECH: Polarized Light Scattering C++ Class Library,” Available at http://physics.nist.gov/scatmech.
  22. H. C.  van de Hulst, Light scattering by small particles (Dover, New York, 1981).
  23. W. J.  Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19, 1505–1509 (1980). [CrossRef] [PubMed]
  24. J. S.  Maier, S. A.  Walker, S.  Fantini, M. A.  Franceschini, E.  Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Opt. Lett. 19, 2062–2064 (1994). [CrossRef] [PubMed]
  25. J. M.  Steinke, A. P.  Shepherd, “Diffusion model of the optical absorbance of whole blood,” J. Opt. Soc. Am. B 5, 813–822 (1988). [CrossRef]
  26. V.  Sankaran, J. T.  Walsh, D. J.  Maitland, “Polarized light propagation through tissue phantoms containing densely packed scatterers,” Opt. Lett. 25, 239–241 (2000). [CrossRef]
  27. A. N.  Yaroslavsky, I. V.  Yaroslavsky, T.  Goldbach, H.-J.  Schwarsmaier, “Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements,” J. Biomed. Opt. 4, 47–53 (1999). [CrossRef]
  28. N.  Ghosh, P. K.  Gupta, H. S.  Patel, B.  Jain, B. N.  Singh, “Depolarization of light in tissue phantoms -effect of collection geometry,” Opt. Comm. 222, 93–100 (2003). [CrossRef]
  29. V.  Sankaran, K.  Schönenberger, J. T.  Walsh, D. J.  Maitland, “Polarization discrimination of coherently propagating light in turbid media,” Appl. Opt. 38, 4252–4261 (1999). [CrossRef]
  30. M. P.  Silverman, W.  Strange, J.  Badoz, I. A.  Vitkin, “Enhanced optical rotation and diminished depolarization in diffusive scattering from a chiral liquid,” Opt. Comm. 132, 410–416 (1996). [CrossRef]
  31. K. C.  Hadley, I. A.  Vitkin, “Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic, and achiral turbid media,” J. Biomed. Opt. 7, 291–299 (2002). [CrossRef] [PubMed]
  32. C. F.  Bohren, D. R.  Huffman, Absorption and scattering of light by small particles (Wiley, New York, 1983), chap. 2, pp. 46–56.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited