OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 1 — Jan. 10, 2005
  • pp: 171–181

Single transverse mode optical resonators

Mark Kuznetsov, Margaret Stern, and Jonathan Coppeta  »View Author Affiliations

Optics Express, Vol. 13, Issue 1, pp. 171-181 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (185 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We use quantum mechanical analogy to introduce a new class of optical resonators with finite deflection profile mirrors that support a finite number of discrete confined transverse modes and a continuum of unconfined transverse modes. We develop theory of such resonators, experimentally demonstrate micro-optical resonators intrinsically confining only a single transverse mode, and demonstrate high finesse step-mirror-profile resonators. Such resonators have profound implications for optical resonator devices, such as lasers and interferometers.

© 2005 Optical Society of America

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(140.3410) Lasers and laser optics : Laser resonators
(140.4780) Lasers and laser optics : Optical resonators
(220.1250) Optical design and fabrication : Aspherics
(230.5750) Optical devices : Resonators
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers
(350.3950) Other areas of optics : Micro-optics

ToC Category:
Research Papers

Original Manuscript: November 3, 2004
Revised Manuscript: December 26, 2004
Manuscript Accepted: December 26, 2004
Published: January 10, 2005

Mark Kuznetsov, Margaret Stern, and Jonathan Coppeta, "Single transverse mode optical resonators," Opt. Express 13, 171-181 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. E. A.  Saleh, M. C.  Teich, Fundamentals of Photonics (Wiley, New York, 1991). [CrossRef]
  2. A. E.  Siegman, Lasers (University Science Books, Mill Valley, CA, 1986).
  3. M.  Kuznetsov, F.  Hakimi, R.  Sprague, A.  Mooradian, “Design and characteristics of high power (>0.5 W cw) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5, 561–573 (1999). [CrossRef]
  4. A. G.  Fox, T.  Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453–458 (1961).
  5. G. D.  Boyd, J. P.  Gordon, “Confocal multimode resonator for millimeter through optical wavelength masers,” Bell Syst. Technol. J. 40, 489–508 (1961).
  6. G. D.  Boyd, H.  Kogelnik, “Generalized confocal resonator theory,” Bell Syst. Technol. J. 41, 1347–1369 (1962).
  7. H.  Kogelnik, T.  Li, “Laser beams and resonators,” Proceedings IEEE 54, 1312–1329 (1966) and Appl. Opt. 5, 1550–1567 (1966). [CrossRef]
  8. A. E.  Siegman, “Laser beams and resonators: the 1960s,” IEEE J. Sel. Top. Quantum Electron. 6, 1380–1388 (2000). [CrossRef]
  9. A. E.  Siegman, “Laser beams and resonators: beyond the 1960s,” IEEE J. Sel. Top. Quantum Electron. 6, 1389–1399 (2000). [CrossRef]
  10. D.  Marcuse, Light Transmission Optics, 2nd ed. (Van Nostrand Reinhold, New York, 1982).
  11. A. W.  Snyder, J. D.  Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).
  12. H. A.  Haus, Waves and Fields in Optoelectronics (Prentice Hall, Englewood Cliffs, NJ, 1984).
  13. E.  Merzbacher, Quantum Mechanics, 3rd ed. (Wiley, New York, 1997).
  14. Z. L.  Liau, D. E.  Mull, C. L.  Dennis, R. C.  Williamson, R. G.  Waarts, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64, 1484–1486 (1994). [CrossRef]
  15. D. A. B.  Miller, D. S.  Chemla, T. C.  Damen, A. C.  Gossard, W.  Wiegmann, T. H.  Wood, C. A.  Burrus, “Electric field dependence of optical absorption near the bandgap of quantum well structures,” Phys. Rev. B32, 1043–1060 (1985).
  16. J. P.  Koplow, D. A. V.  Kliner, L.  Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25, 442–444 (2000). [CrossRef]
  17. M. E.  Kuznetsov, “Optical resonators with mirror structure suppressing higher order transverse spatial modes,” US patent #6,810,062, issued October 26, 2004.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited